
22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 1/219

Lord André Groseth, Sondre Halvorsen, Viktor Vartdal Johansen,
Julian Sagen and Jeremiah Augie Salita Uy

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 2/219

 OsloMet - storbyuniversitetet
 Postboks 4, St. Olavs plass
 0130 Oslo

Project Group:
19-08

Availability:
Open Source

BACHELOR THESIS

Title:

Anonymization as a Service

Date:
23.05.2019

Total Pages: 218
Appendix: 32

Students:
Lord André Groseth (s181365)
Sondre Halvorsen (s305349)
Viktor Vartdal Johansen (s315615)
Julian Sagen (s315584)
Jeremiah Augie Salita Uy (s181369)

Supervisor:
Eva Hadler Vihovde

Collaborator:
 NAV Data and Insight

Supervisor:
Robindra Prabhu

Summary:
Anonymization as a Service is a bachelor project thesis done at OsloMet in collaboration
with NAV IT. The project team has developed a solution to provide data anonymization
against re-identification risk, as a service for the data scientists working at NAV IT.

To accomplish this goal, a microservice was developed. The service is built using Spring
Boot and utilizes the ARX de-identification library to implement the core functionality. The
service is packaged and deployed as a Docker container.

A Python package was developed for the data scientists to interact with the microservice,
and as a stretch goal, a web application was developed for a wider user group.

Three key expressions:

Data anonymization Public sector Data science

1

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 3/219

About the report
This report has been optimized for digital reading by utilizing links, footnotes, and code
blocks. While the digital version is recommended, this report can also be read in paper
format.

Throughout this report, the following expressions have the listed definitions:

● ‘the product(s)’:
Subsystems of the solution developed during the course of this project.
Note the expressions ‘product documentation’, ‘product specification’ and
‘minimum viable product' do not concern the subsystems specifically, but the
solution as a whole. Their use of ‘product’ are exceptions to the above
definition, so they retain their innate meaning.

● ‘the solution’:
Also referred to as ‘Anonymization as a Service’ in the documentation,
consists of the products working together as a whole, altogether aspiring to
provide the functionality requested in the product specification.

● ‘the project’:
All work involved in the whole bachelor’s project, including work process.

● ‘the team’:
All five team members contributing to the project.

The project is open source and is distributed with MIT license . The client, NAV IT, is a
government agency following a policy where all software that can be open source , should be
open source .

The report has been written in English at the request of the client, as the solution developed
has a potentially international user group.The intention is to make global consumption of, and
contribution to the project as easy as possible.

Terminology is expressed in italic text throughout the report, and listed along with an
explanation in chapter 7.1 Terminology of the Appendix. All sources are linked in footnotes.

See chapter 7.3 Testimonial (Norwegian) in the Appendix for the client’s, NAV IT, description
of the work the team has completed.

2

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 4/219

Chapter introduction
Following this paragraph is a list that introduces each chapter of the report with a short summary. Its
purpose is to provide a sense of reading order. As chapter relevancy depends on the reader’s
approach, all readers should use this list for direction.

The chapter order is intended to provide a gradual understanding of the project. As such, it represents
the report’s recommended reading order from start to finish.

1 Presentation
Introduces the project, its background, and the project stakeholders involved. The document provides
a good overview of the solution for readers not interested in reading the more detailed product
documentation. It has been written with the expectation that this chapter is read before any other
chapter. This chapter also includes the project’s conclusion.

2 De-Identification
This chapter is intended for readers without prior knowledge of de-identification or anonymization.
Furthermore, this chapter presents the problem domain of the project, providing essential information
for understanding the project’s purpose.

3 Process Documentation
This chapter provides insight into the team’s work process, including method and tools. The document
includes the teams decisions and experiences using new and modern tools and development
processes, and has high value for users looking to gain insight in terms of estimation, planning and
executing a software project. Readers interested in the team’s experiences with the strategies and
tools utilized should read this chapter.

4 Test Documentation
The purpose of this chapter is to give the reader a detailed description of each test and how the test is
implemented. This document is written with the expectation that the reader has basic programming
and testing knowledge, and has read the process documentation.

5 Product Documentation
This chapter describes the products developed on a architectural and technical level. People working
with operations, maintenance, or future development of the project should read this chapter. The
reader is expected to have moderate programming knowledge as it is advantageous for understanding
the concepts of this document.

6 User Manual
The purpose of this chapter is to give the reader a step-by-step guide on how to set up the solution
and how to benefit from the products. Moderate programming knowledge is advantageous in setting
up the solution. It is recommended to read the presentation documentation and the de-identification
chapter before reading the user manual.

7 Appendix
This chapter contains explanations of terminology, HTTP request and response body, the product
specification and the testimonial from NAV IT.

3

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 5/219

Table of Contents
1 Presentation 13

1.1 Introduction 13
1.2 Presentation of the group 14
1.3 Presentation of the client 15

1.3.1 Project stakeholders at NAV IT 15
1.4 Project background 16

1.4.1 Introduction to de-identification 17
1.4.2 Current situation 17

1.5 The solution - Anonymization as a Service 18
1.5.1 Solution description 18

1.5.1.1 ARXaaS - The service 19
1.5.1.2 Clients 21

1.5.1.2.1 PyARXaaS - the wrapper package 21
1.5.1.2.2 WebARXaaS - web application (stretch goal) 24

1.5.2 Deployment 25
1.5.3 License 26

1.6 Future Development 26
1.7 Conclusion 27

1.7.1 Value delivered 27

2 De-identification 29
2.1 Introduction 29
2.2 De-identification overview 29

2.2.1 Pseudonymization 30
2.2.2 Anonymization 30

2.3 Main anonymization techniques 31
2.4 Risk assessment 31
2.5 Privacy Models 33

2.5.1 K-Anonymity 33
2.5.2 L-Diversity 33
2.5.3 T-Closeness 33

2.6 Generalization Hierarchies 34
2.7 Anonymizing a dataset 35

3 Process documentation 36
3.1 Introduction 36
3.2 Planning and methods 36

3.2.1 Development methods 36
3.2.1.1 Agile work process 37
3.2.1.2 Continuous integration and Continuous delivery 40

3.2.1.2.1 CI/CD pipeline 41

4

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 6/219

3.2.1.3 Test driven development (TDD) 43
3.2.1.4 Code style 44
3.2.1.5 Code reviews 44
3.2.1.6 Feature slicing 45

3.2.2 Project phases 45
3.2.2.1 Initiation 45
3.2.2.2 Planning 45
3.2.2.3 Execution 47
3.2.2.4 Project conclusion and documentation 47

3.2.3 Planning tools 47
3.2.4 Competence building 49

3.2.4.1 Literature 49
3.2.4.2 Courses 49

3.2.4.2.1 Online Courses 49
3.2.4.2.2 Presentations and workshops 50

3.2.5 Budget 50
3.3 Development process 51

3.3.1 Descriptions of the sprints 51
3.3.1.1 Sprint 0 51
3.3.1.2 Sprint 1 52
3.3.1.3 Sprint 2 54
3.3.1.4 Sprint 3 57
3.3.1.5 Sprint 4 60
3.3.1.6 Sprint 5 63
3.3.1.7 Sprint 6 66
3.3.1.8 Sprint 7 69

3.3.2 Development tools 73
3.3.3 Lessons learned during development 74

3.4 Product specification 75
3.4.1 Main specifications 75

3.4.1.1 System Diagram 75
3.4.1.2 Requirements 76

3.4.1.2.1 Functional requirements 76
3.4.1.2.2 Non-Functional Requirements 77

3.4.1.2.2.1 Software Requirements 77
3.4.1.2.2.2 Design Decisions 77

3.4.1.3 User Stories 78
3.4.1.4 System Restriction 81

3.4.1.4.1 Security 81
3.4.1.4.2 Data Storage/Cache 81
3.4.1.4.3 Accessible API 81

3.4.1.5 Additional Requirements for System Construction 81

5

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 7/219

3.4.1.5.1 Process Requirements 81

3.4.1.5.1.1 Continuous Integration/Continuous Delivery (CI/CD) 81
3.4.1.5.1.2 System Development Framework 82

3.4.1.5.2 Technical Requirements 82
3.4.1.5.2.1 System Packaging 82

3.4.1.6 Additional Requirements for Documentation 82
3.4.1.6.1 System Documentation 82

3.4.2 Stretch goals 83
3.4.3 Delivery 83

3.5 Conclusion process documentation 84

4 Test documentation 85
4.1 Goal 85
4.2 Tools 85
4.3 Planning 86
4.4 Execution 86

4.4.1 Travis 88
4.4.2 Static code analysis 89
4.4.3 Vulnerability analysis 90

4.5 Test phases 91
4.6 ARXaaS 93

4.6.1 Unit testing 93
4.6.2 Integration testing 94
4.6.3 System testing 95

4.7 PyARXaaS 97
4.7.1 Unit testing 97
4.7.2 Integration testing 99
4.7.3 System testing 99

4.8 WebARXaaS 100
4.8.1 Data integrity 100
4.8.2 API Testing 102

4.9 Performance testing 102
4.9.1 Load test 103
4.9.2 Stress test 105

4.10 Acceptance testing 109
4.11 Conclusion test documentation 110

5 Product documentation 111
5.1 Introduction 111
5.2 ARXaaS 112

5.2.1 Short presentation 112
5.2.2 Release Pipeline 113
5.2.3 Technologies 115

6

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 8/219

5.2.3.1 Runtime 115
5.2.3.2 Building and packaging 116

5.2.3.2.1 Apache Maven 116
5.2.3.2.2 Docker 116

5.2.3.3 Libraries and Frameworks 116
5.2.3.3.1 Runtime 116
5.2.3.3.2 Development 117

5.2.4 Architecture 118
5.2.5 Endpoints 119

5.2.5.1 Index 119
5.2.5.2 Analyzation 119
5.2.5.3 Anonymization 120
5.2.5.4 Hierarchy 121

5.2.5.4.1 Redaction based hierarchy 121
5.2.5.4.2 Interval based hierarchy 122
5.2.5.4.3 Order based hierarchy 123

5.2.6 Functionality 125
5.2.6.1 Controller Layer 126
5.2.6.2 Service Layer 128
5.2.6.3 Domain Layer 129

5.2.7 Security 130
5.2.7.1 SSL Handshake 130

5.2.8 Monitoring 131
5.2.9 Logging 132
5.2.10 License 132
5.2.11 Error description 132

5.2.11.1 HTTP status codes 132
5.3 Client side introduction 134
5.4 PyARXaaS 134

5.4.1 Short presentation 135
5.4.2 Packaging and release 136
5.4.3 Release Pipeline 137
5.4.4 Technologies 139
5.4.5 Libraries 139

5.4.5.1 Runtime libraries 139
5.4.5.2 Development libraries 141

5.4.6 Functionality 142
5.4.6.1 Package components 142

5.4.6.1.1 Connecting to ARXaaS 142
5.4.6.1.2 Hierarchy Builders 145
5.4.6.1.3 Privacy Models 146
5.4.6.1.4 dataset class 148

7

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 9/219

5.4.6.1.5 Response objects 149

5.4.7 Security 152
5.4.8 Logging 152
5.4.9 License 152

5.5 WebARXaaS 153
5.5.1 Short presentation 153
5.5.2 Technologies 153

5.5.2.1 React 153
5.5.2.2 React-BootStrap 154
5.5.2.3 Papa Parse 154

5.5.3 Functionality 154
5.5.3.1 DataImport 154
5.5.3.2 Privacy model builder 155
5.5.3.3 Analyzation 155
5.5.3.4 Anonymization 155

5.5.4 Operations 156
5.5.5 License 156

5.6 Future development 157
5.6.1 ARXaaS 157
5.6.2 PyARXaaS 157
5.6.3 WebARXaaS 158

5.7 Product Documentation Conclusion 158

6 User manual 159
6.1 ARXaaS 159

6.1.1 Run ARXaaS 159
6.1.1.1 HTTP Configuration 159

6.1.1.1.1 Run ARXaaS from Docker image 159
6.1.1.1.2 Run ARXaaS from .jar 160

6.1.1.2 HTTPS Configuration 160
6.1.1.2.1 Recommended: Run ARXaaS with dynamic HTTPS parameters 160
6.1.1.2.2 Generating and correctly configuring a keystore for an ARXaaS
project 160
6.1.1.2.3 Compile and run ARXaaS with pre-defined, non-dynamic SSL
configuration 161
6.1.1.2.4 Running the server with dynamic HTTPS configuration for static
HTTPS keystore/certificate(s). 162

6.2 PyARXaaS client 163
6.2.1 Introduction 163
6.2.2 Installing PyARXaaS Client 163

6.2.2.1 Pip install 164
6.2.2.2 Setup virtual environment 164

6.2.2.2.1 Mac/Linux 164

8

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 10/219

6.2.2.2.2 Windows 164

6.2.3 Quick start guide 165
6.2.3.1 Analyze the risk of a dataset 165
6.2.3.2 Anonymize a dataset 167

6.2.4 Connecting to and using ARXaaS 169
6.2.4.1 Creating an instance 169
6.2.4.2 Risk Profile 169
6.2.4.3 Anonymization 169
6.2.4.4 Hierarchy Generation 170

6.2.5 Using the dataset class 170
6.2.6 Construction 170

6.2.6.1 Dataset type conversion 171
6.2.6.2 Mutation 171

6.2.6.2.1 Attribute type 171
6.2.6.2.2 Hierarchies 171

6.2.7 Creating Hierarchies 172
6.2.7.1 Hierarchy Building 172
6.2.7.2 Redaction based hierarchies 172

6.2.7.2.1 Creating a simple redaction hierarchy 173
6.2.7.3 Interval based hierarchies 174
6.2.7.4 Order based hierarchy 175

6.3 WebARXaaS client 176
6.3.1 Starting the application 176
6.3.2 Deploying to production 176
6.3.3 Configuration 177
6.3.4 Analyzing 177
6.3.5 Anonymizing 179
6.3.6 Privacy model input field description 183

6.3.6.1 K-Anonymity 183
6.3.6.2 L-Diversity 183

6.3.6.2.1 Using non-recursive variants of L-diversity 183
6.3.6.2.2 Using Recursive variant of L-diversity 184

6.3.6.3 T-Closeness 185

7 Appendix 186
7.1 Terminology 186
7.2 Product Specification 190
7.3 Testimonial from NAV IT (Norwegian) 207
7.4 Analyzation HTTP JSON request body 208
7.5 Analyzation HTTP JSON response body 208
7.6 Anonymization HTTP JSON request body 211
7.7 Anonymization HTTP JSON response body 212

9

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 11/219

7.8 Redaction based hierarchy HTTP JSON request body 215
7.9 Redaction based hierarchy HTTP JSON response body 216
7.10 Interval based hierarchy HTTP JSON request body 216
7.11 Interval based hierarchy HTTP JSON response body 217
7.12 Order based hierarchy HTTP JSON request body 218
7.13 Order based hierarchy HTTP JSON response body 218

10

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 12/219

List Of Figures
■ Figure 1 - System diagram
■ Figure 2 - ARXaaS architecture layer diagram (DDD)
■ Figure 3 - PyARXaaS package components overview
■ Figure 4 - Example of PyARXaaS usage in Jupyter notebook
■ Figure 5 - of PyARXaaS PyPI page
■ Figure 6 - Screenshot of WebARXaaS application use
■ Figure 7 - a ARXaaS CI/CD pipeline job on Travis CI
■ Figure 8 - of the team completing a Sprint Review with the Product Owner,

Robindra
■ Figure 9 - of a sprint review with NAV IT stakeholders
■ Figure 10 - of a SCRUM retrospective board from a team retrospective meeting
■ Figure 11 - of a team Sprint Retrospective at NAV IT’s offices
■ Figure 12 - Diagram of a CI/CD pipeline
■ Figure 13 - ARXaaS pull request waiting to be merged
■ Figure 14 - Overview of ARXaaS CI/CD pipeline
■ Figure 15 - showing the process of test driven development
■ Figure 16 - Screen grab from a Github pull request waiting for review
■ Figure 17 - Screen grab from a Github pull request that has been reviewed and

accepted
■ Figure 18 - Example figure of feature slicing
■ Figure 19 - Example Asana Kanban board
■ Figure 20 - Gantt Diagram
■ Figure 21 - Image of Accelerate book
■ Figure 22 - Sprint retro Start, Stop, and Continue
■ Figure 23 - Sprint retro
■ Figure 24 - System diagram
■ Figure 25 - Checking the branch before being approved to merge
■ Figure 26 - All checks passed
■ Figure 27 - Failed Travis build
■ Figure 28 - Passed Travis build
■ Figure 29 - Travis script running Code Climate test reporter
■ Figure 30 - Jacoco include/exclude configuration
■ Figure 31 - Code Climate dashboard
■ Figure 32 - Snyk dashboard
■ Figure 33 - All unit test passed
■ Figure 34 - All integration test passed
■ Figure 35 - All system test passed
■ Figure 36 - Risk profile form WebARXaaS
■ Figure 37 - Risk profile form th ARX GUI
■ Figure 38 - Suppression limit parameter
■ Figure 39 - Response time for a dataset of given rows x columns during ARXaaS

stress test
■ Figure 40 - of response time for a dataset of size in MiB during ARXaaS stress test

11

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 13/219

■ Figure 41 - ARXaaS tools and libraries diagram
■ Figure 42 - Diagram showing the ARXaaS CI/CD pipeline
■ Figure 43 - Screengrab from ARXaaS API documentation
■ Figure 44 - Screengrab of ARXaaS on Maven Central
■ Figure 45 - ARXaaS architecture overview
■ Figure 46 - UML diagram of ARXaaS
■ Figure 47 - ARXaaS controller layer class diagram
■ Figure 48 - ARXaaS service layer class diagram
■ Figure 49 - Screen grab of ARXaaS metrics dashboard when running on NAIS
■ Figure 50 - Error response contents
■ Figure 51 - Unable to anonymize error message
■ Figure 52 - Invalid attribute type error message
■ Figure 53 - Failed to create dataset error message
■ Figure 54 - diagram showing abstract usage of PyARXaaS
■ Figure 55 - PyARXaaS version control host repository
■ Figure 56 - showing the PyARXaaS PyPI page.
■ Figure 57 - Diagram showing the PyARXaaS CI/CD pipeline
■ Figure 58 - PyARXaaS pull request view on Github
■ Figure 59 - of the documentation badge
■ Figure 60 - Class diagram for PyARXaaS
■ Figure 61 - Class diagram for ARXaaS abstraction classes
■ Figure 62 - Hierarchy Builder class diagram
■ Figure 63 - Privacy models class diagram
■ Figure 64 - dataset class diagram
■ Figure 65 - ARXaaS response objects class diagram
■ Figure 66 - Sequence diagram of WebARXaaS
■ Figure 67 - Importing of dataset on WebARXaaS
■ Figure 68 - dataset headers generated
■ Figure 69 - WebARXaaS privacy model section
■ Figure 70 - WebARXaaS download button for anonymized dataset
■ Figure 71 - Image of PyARXaaS documentation page using Sphinx
■ Figure 72 - Importing of dataset to analyze
■ Figure 73 - Setting attribute type of dataset to analyze
■ Figure 74 - Analyze the dataset
■ Figure 75 - Importing of dataset to anonymize
■ Figure 76 - Setting attribute type and importing transformation model
■ Figure 77 - Setting the privacy model to anonymize the dataset
■ Figure 78 - Setting the suppression limit for the dataset
■ Figure 79 - Anonymizing the dataset
■ Figure 80 - K- Anonymity input field
■ Figure 81 - Input fields for Distinct, Grass-Berger- and Shannon-Entropy
■ Figure 82 - Input fields for Recursive L-Diversity
■ Figure 83 - Input fields for Order and Equal Distance T-Closeness
■ Figure 84 - Testimony from NAV IT

12

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 14/219

1 Presentation
Introduces the project, its background, and the project stakeholders involved. The document
provides gives an overview of the solution for readers not interested in reading the more
detailed product documentation. It has been written with the expectation that this chapter is
read before any other chapter. This chapter also includes the project’s conclusion.

1.1 Introduction
Organizations worldwide store large amounts of user information, and with the current trend
of digitalization, they are likely to keep storing more. They recognize the potential value in
analyzing the stored information, but they are not always free to do so. Data privacy laws,
while incredibly important for privacy protection, places significant limitations on information
access. In this project we present a solution to how one can control the detriment to privacy
when attempting to utilize sensitive data as a resource.

Anonymization as a Service is a bachelor thesis project completed by a group of students
from OsloMet in cooperation with NAV IT. The goal of this project is to provide an integration
of ARX ’s state-of-the-art anonymization functionality into NAV IT’s data-driven development 1

strategy. While quite useful, ARX’s interface is demanding, and can be further streamlined.
The solution aims to solve this problem by wrapping ARX’s functionality in a web API
application that offers ARX’s functionality as a web service.

The planning for this bachelor project was initiated in June 2018. The development of the
solution was officially started in January 2019 and lasted until May 2019. After the
development completion , the team worked on this report until the deadline on May 23rd,
2019. The solution was deployed to NAV IT’s internal platform on the 15th of April and has
been continuously deployed to afterwards, in accordance with continuous integration and
continuous development (CI/CD) practices.

The team has been working in Oslo, at OsloMet university and NAV headquarters in
Sannergata 2, four days a week with fixed core work hours nine to four. After many hours
spent on this project we are proud of the results. We have developed a solution, delivered it,
and distributed it as an open source project. The team has also delivered on the project’s
stretch goals as described in chapter 3.4.2 Stretch goals.

The project could not have been completed without the excellent support from our
stakeholders at NAV IT Robindra Prabhu, Paul Bencze, Gøran Berntsen and Erik Vattekar.
The team also wishes to thank NAV IT for trusting us with this important and challenging
assignment and for providing us with an excellent work environment. We also appreciate the
opportunities granted to present the solution. This includes both presentations for NAV IT
internally and other public sector agencies such as Agency for Public Management and e-
Government (Difi) and the Norwegian tax administration(Skatteetaten). The team also 2 3

1ARX De-Identifier homepage - https://arx.deidentifier.org
2Difi homepage - https://www.difi.no/

13

https://arx.deidentifier.org/
https://www.difi.no/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 15/219

wishes to acknowledge and thank the ARX team for developing a powerful anonymization
library and distributing it open source . This project was made possible as a result of their
magnificent work.

Finally, the team would like to thank the Bachelor project supervisor Eva Hadler Vihovde for
guiding the team continuously throughout the project.

1.2 Presentation of the group

 Sondre - IT, has worked part-time as a data engineer for NAV IT AI-lab
since fall 2018. Has helped keep the team connected to different project
stakeholders in NAV IT. Main competence is Java and Python
development, but has experience in web development from previous work.

 André - has a bachelor's degree in machine engineering. Currently
finishing a bachelor's degree in software engineering. Worked as an intern
at Aker Solutions prior to studying computer engineering. Main
competence in Java and MVC architecture.

 Julian - IT, Two years of work experience from Basefarm. Besides his
studies, he has worked part-time for Medarbeiderne AS doing further
development on their CRM system. Spent 6 months as an exchange
student, while studying abroad in San Francisco. Main competence is
Java, Javascript and web development.

 Viktor - a programmer with passion for web development and
understanding logical systems. Aspires to never stop absorbing knowledge
and to eventually become a renowned full-stack developer. As of the
publication of this report, he is especially fond of programming in the MVC
architecture, utilizing either Java or C# in the Spring Boot and .Net
frameworks respectively.

 Jeremiah - has a bachelor's degree in machine engineering. Currently
studying for a bachelor's degree in software engineering. Worked as an
intern for OXX from January to May 2019. Main competence in Java,
javascript, C#, MySql, and MVC architecture.

3Norwegian Tax Administration homepage - https://www.skatteetaten.no/

14

https://www.skatteetaten.no/en/person/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 16/219

1.3 Presentation of the client
The Norwegian Labour and Welfare Administration (NAV) is the backbone of the Norwegian
welfare state, administering a third of the national budget and servicing almost 2.8 million
people. Responsibilities include, but are not limited to, unemployment benefit, work
assessment allowance, sickness benefit, pension, child benefit, and cash-for-care benefit. In
addition, NAV manages and retains stewardship of several important data sources
containing information on its users and the services it provides. NAV IT is currently in the
midst of a digital transformation, undergoing significant changes in team organization, work
processes and harnessing new technologies. Its utilization of data in the development of new
and improved services faces limitations from strict data privacy practices.

Data and Insight is a department within NAV IT. NAV IT Data and Insight delivers systems
and operations purposed for data storage, data processing, data access and analytics.
Our client for this assignment is NAV IT Data and Insight, and will be hereby referred to as
the client unless otherwise is specified.

1.3.1 Project stakeholders at NAV IT

Person of Contact

Name Role Email

Gøran Berntsen Tech Lead - Open Data Goran.Berntsen@nav.no

Product Owner
More about the product owner role can be read about in chapter 3.2.1.1 Agile work process.

Robindra Prabhu Data Scientist - AI Lab Robindra.Prabhu@nav.no

Other project stakeholders

Paul Bencze Tech Lead - AI Lab Paul.Bencze@nav.no

Erik Vattekar Data Engineer - AI Lab Erik.Vattekar@nav.no

15

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 17/219

1.4 Project background
The terms data and dataset are used continuously throughout the documentation. Unless anything
else is specified, the term refers to tabular data/datasets containing population data, where one row
corresponds to a record.

Within NAV IT Data and Insight, there is a team called AI Lab. One of its tasks is to function
as an internal source of knowledge on machine learning and data science. Data
anonymization, also referred to as de-identification and risk assessment, is one of the areas
relevant to the AI Lab. This is a worldwide field involving dataset manipulation and
analyzation.

The objective of data anonymization is to create processes of controlled data disposal.
AI Lab is currently utilizing both internal and external tools for data anonymization. One such
tool is ARX , which is widely regarded as top-class anonymization software because of its 4

utilization of well-established models and algorithms.

Data science today is typically conducted within programming languages like Python and R.
The data scientists develop scripts, notebooks, and larger programs for extracting and
analyzing data. The early stages of these tasks typically involve data cleaning and data
transformation, which is often conducted with the help of ARX. However, ARX does not
currently integrate seamlessly into the typical Python/R-based data science workflow. While
ARX provides useful data anonymization functionality for an experienced user, there is a
significant time investment involved in both learning how to use, and using the application.
Perhaps the most significant is the latter, which if solved, could contribute to sparing AI Lab’s
data scientists for unnecessary work hours.

As a result, the AI-lab has requested the team to:

● Develop a solution that grants access to ARX functionality from modern data science
toolsets and workflows

● Provide an extendable framework for making ARX’s state-of-the-art anonymization
methods accessible to a broader user group in NAV IT, by lowering barriers of use
such as user requirements.

4 Official ARX paper/article - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419984/

16

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419984/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 18/219

1.4.1 Introduction to de-identification
Following is a short description of de-identification. For more in-depth explanations see
chapter 2 on de-identification.

De-Identification describes anonymization operations that serve to reduce the
re-identification risk in a dataset containing personally identifiable information, otherwise
known as PII . Transforming datasets containing PII into aggregates is a common practice
within de-identification, but this often results in undesirably large amounts of information loss.
This loss in information obstructs other researches from verifying the aggregate or doing
additional research on the data. By transforming the data so as to reduce the re-identification
risk , de-identification serves to provide legal opportunities for sharing and utilizing datasets
containing PII.

ARX is is an open source (Apache License, Version 2.0) anonymization software tool.
Programmed in Java, ARX offers its anonymization functionality through its library of
state-of-the-art anonymization models and algorithms. ARX is utilized by medical
researchers worldwide for anonymization of patient datasets prior to sharing them with the
research community.

As of the time that this report is written, ARX is being continuously updated and improved by
the ARX team. This has placed an important requisite on the solution in regards to
updateability, which is elaborated on in chapter 5.6 on Future Development.

De-identification is further elaborated on in chapter 2 De-identification, while more
information on ARX can be found in ARX’s official papers, available in footnote 4.

1.4.2 Current situation
The majority of literature, practices, and frameworks in the field of anonymization are
targeted on the distribution of sensitive data between researchers. The client’s use cases for
anonymization are similar, but differ slightly.

NAV IT main data de-identification use cases

● Risk assessment to determine the legal status of a dataset
● De-identification to ease internal sharing or processing of data
● Risk assessment and de-identification for external sharing of data

All processing of datasets containing PII is subject to privacy laws and regulations.
Whenever the client finds a new use for PII data, it has to go through a Data Protection
Impact Assessment or DPIA . The process of de-identifying a dataset involves the 5

processing of PII and is hence subject to the same legal restrictions. However, once
sufficiently de-identified, the dataset will no longer be considered personal information, and
consequently, it will no longer be bound by the initial level of strict legal compliance. As a
result, sufficiently de-identified datasets may provide leeway for data scientists and

5 e-Government DPIA - https://www.datatilsynet.no/regelverk-og-verktoy/veiledere/vurdering-av-personvernkonsekvenser/

17

https://www.datatilsynet.no/regelverk-og-verktoy/veiledere/vurdering-av-personvernkonsekvenser/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 19/219

developers in the utilization of internal data sources. Determining the proper legal status of a
dataset depends on the dataset’s re-identification risk . This project also aims to improve
access to tooling that provides efficient methods and tools for determining that risk, while
mainly aiming to provide increased availability to state-of-the-art anonymization functionality.
Read more about the de-identifying process in chapter 2 De-identification.

The data-driven revolution is becoming widely adopted all around the world. The core of the 6

data-driven enterprise paradigm is the sharing of data internally in the enterprise. Easing
access to anonymization would put NAV IT in a better position to become more data-driven
in their pursuit to offer better services to their users.

Tools in the anonymization field mainly fall into one of the two following categories.

● Proprietary solutions that work as a ‘walled garden’ with limited integration towards
other tooling

● Open source projects

Common to both categories is the fact that most solutions are mainly focused on Graphical
User Interfaces(GUI). Such solutions are by their very nature limited in support for integration
and further development.

1.5 The solution - Anonymization as a Service
This chapter describes the solution developed. For a more detailed description of the development
process and its phases, please read chapter 3 Process documentation. For a more detailed
description of the product, please read chapter 5 Product documentation.

1.5.1 Solution description
Anonymization as a Service provides access to anonymization tools for data scientists at
NAV IT. A data scientist is able to analyze and anonymize tabular datasets based on
user-provided configurations. The user can configure privacy models, attribute types, and
transformation models known as hierarchies to use in the anonymization. See the 2.6
Generalization Hierarchies section in the De-Identification chapter for elaboration on
hierarchies and their purpose.

The Anonymization as a Service ecosystem
Service

● ARXaaS
Clients

● PyARXaaS
● WebARXaaS (stretch goal)

Anonymization as a Service refers to the products that make up the Anonymization as a
Service ecosystem. The centerpiece of this ecosystem is the microservice ARXaaS or “ARX
as a Service”. The core idea behind ARXaaS’ microservice design is to create an

6 Meaning of a Data-Driven Enterprise - https://dzone.com/articles/what-it-means-to-be-a-data-driven-enterprise-and-h

18

https://dzone.com/articles/what-it-means-to-be-a-data-driven-enterprise-and-h

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 20/219

anonymization platform that offers clients seamless integration with state-of-the-art
anonymization functionality.

Two ‘client’ products have been developed, named PyARXaaS and WebARXaaS. The
purpose of PyARXaaS and WebARXaaS is to provide user interfaces to ARXaaS.
PyARXaaS is a Python package meant for data scientists and WebARXaaS is a web
application for a wider user group.

The main focus throughout the project was the development of ARXaaS and PyARXaaS,
while WebARXaaS was a stretch goal of the project. This is reflected in the maturity of the
products.

Solution overview diagram

Figure 1 - System diagram

1.5.1.1 ARXaaS - The service

ARXaaS is named after ARX because the team felt it was appropriate to show attribution to
the great work of the ARX team. ARXaaS is a web service developed using the Java Spring
Boot framework. It utilizes the ARX anonymization library to implement functionality in three 7

key areas.

● Dataset risk analysis
● Dataset anonymization
● Generation of generalization hierarchies (used in anonymization)

The service implements HTTP endpoints to expose the functionality for client applications.
The service endpoints follow a RESTful design and are documented extensively. The API

7 ARX homepage - https://arx.deidentifier.org/

19

https://arx.deidentifier.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 21/219

documentation is automatically generated and published to the project documentation page 8

on every new release. The service is packaged and distributed as a Docker container. See
chapter 5.2 ARXaaS in the product documentation for elaboration on the technical
implementation.

It is important to note that hierarchy generation was not part of the original product
specification. The product owner did not believe the team capable of implementing it within
the deadline. The team saw this as a challenge, and by mid-April, hierarchy generation with
the exception of date hierarchies were implemented along with test coverage and
documentation. For details on hierarchies see 5.2.5.3 Hierarchy section in the product
documentation.

NAV IT has its own internal application platform named NAIS . This platform handles 9

encryption and security for all services deployed to it. With ARXaaS having use cases
outside of NAV IT, the service’s security is not sufficient with deployment to NAIS. As such,
the team was also required by the client to implement stand-alone HTTPS support. Guide to
setup the service with HTTPS can be read in chapter 6.1.1.2 HTTPS Configuration and on
the ARXaaS Github page . Elaboration on HTTPS implementation can be read in Product 10

documentation chapter 5.1 ARXaaS.

The ARXaaS architecture has been inspired by Domain Driven Design (DDD). The different
parts of the system are divided into separate layers according to responsibility. See chapter
5.2.4 Architecture in the product documentation for more details.

Figure 2 - ARXaaS architecture layer diagram (DDD)
Testing
To ensure the quality of the solution, the team has utilized various types of testing. As a
domain concerning sensitive data of individuals, the quality of the product is of paramount
importance. In order to ensure that the service can be entrusted with the sensitive data,
extensive and robust testing of the product is necessary. ARXaaS currently(May 2019) has
93% test coverage.

8 ARXaaS API documentation page - https://oslomet-arx-as-a-service.github.io/ARXaaS/
9 NAIS - https://nais.io/
10 ARXaas HTTPS guide - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/READMEHTTPS.md

20

https://oslomet-arx-as-a-service.github.io/ARXaaS/
https://nais.io/
https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/READMEHTTPS.md

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 22/219

Testing of ARXaaS can be divided into the following categories:

● Testing of implementation correctness
Unit, integration, system and acceptance testing

● ARX parity testing
Tests that verify that the output from the service is identical to the consuming
client’s output.

● Performance testing
ARXaaS was load tested on the NAIS platform test environment. This
contributed to fine tuning of the operational parameters for the service, such
as RAM and CPU power needed for running the service.

For in-depth information, see chapter 4 Testing documentation.

1.5.1.2 Clients
The project team has built two clients for consumption of the ARXaaS service. One of them
is a Python package purposed for the data scientist user group. The other one is a web app
with a simplified user interface targeting a wider user group.

1.5.1.2.1 PyARXaaS - the wrapper package

PyARXaaS is a python wrapper package developed for NAV IT’s data scientists. The product
owner’s main requirement demanded that anonymization functionality was to be made
available in Python. A common use case would be in a workflow where the data scientist is
manipulating a dataset, and requires dynamic analysis of the data anonymity metrics.
Another use case could involve integrating the system in a data pipeline to provide data
analytics and anonymization capabilities.

To fulfill its purpose, the package provides an easy to use Python API and makes HTTP calls
to ARXaaS . See chapter 5.4 PyARXaaS product documentation, for a detailed description of
the package, technologies used, package components, release pipeline, security and
logging.

21

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 23/219

Figure 3 - PyARXaaS package components overview

Data scientists can use PyARXaaS to program Python scripts for re-identification analysis
and anonymization of datasets. PyARXaaS’s anonymization functionality is elaborated on in
chapter 2 De-identification. Read about using PyARXaaS in 6.2 PyARXaaS user manual.

Jupyter notebook is the preferred editor tool of NAV IT data scientists for Python 11

programming. Jupyter notebook provides an interactive web editor for writing and executing
Python code asynchronously in cells that can be interspersed with text cells for explanation.
The Jupyter notebook environment has influenced the development of PyARXaaS
specifically design decisions such as logging and feedback to the user. It is of course also
possible to use PyARXaaS as a regular package in a Python script or application.

11 The Jupyter Notebook Introduction - https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

22

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 24/219

Figure 4 - Example of PyARXaaS usage in Jupyter notebook

PyARXaaS is continuously being published to the Python Package Index(PyPI) as new 12

versions are developed. This ensures constant availability of the package’s latest version for
the user group. Also, PyARXaaS user documentation is built and published alongside every 13

new version, which is essential for guiding the users of the product. See chapter 5.4.3
Release Pipeline for more in-depth description of the release process for PyARXaaS.

Figure 5 - of PyARXaaS PyPI page

12 PyARXaaS PyPI page https://pypi.org/project/pyARXaaS/
13 PyARXaaS user documentation - https://pyaaas.readthedocs.io/en/latest/notebooks/notebooks.html

23

https://pypi.org/project/pyARXaaS/
https://pyaaas.readthedocs.io/en/latest/notebooks/notebooks.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 25/219

1.5.1.2.2 WebARXaaS - web application (stretch goal)

The product owner made a request for a product that could offer access to ARXaaS’s
anonymization functionality for a wider user group. This request was a result of a need for
streamlined access to data analysis and anonymization functionality without the requisite of
Python programming knowledge. To fulfill this request, the team created the WebARXaaS
product. WebARXaaS is a React web app that offers integration with ARXaaS through a user
friendly GUI experience from any web browser. Since it was a stretch goal, work on the
solution did not start until mid April. As such, efforts on WebARXaaS have been focused on
implementing functionality at the expense of interface design.

Figure 6 - Screenshot of WebARXaaS application use

24

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 26/219

1.5.2 Deployment
NAV IT requested in the preliminary meetings with the team, that continuous integration and
preferably continuous delivery was to be complied to and fulfilled throughout the project. See chapter
3.2.1.2 Continuous integration and Continuous delivery, for the concepts and the team usage in even
closer detail.

The client wished for ARXaaS to be deployed to it’s internal container orchestration platform
NAIS . This was part of the motivation for creating a complete CI/CD pipeline utilizing Travis 14

CI for every product of the solution. Having a mature release pipeline made it easier to get 15

permission for deploying to NAIS, as the team could refer to the tests and vulnerability scans
being done on every product build.

During the first few sprints, the team set up a Kubernetes cluster on Google Cloud to
continuously deploy to, until the product was stabilized. Deployment to NAIS happened after
the product got stabilized in the mid of April. The team feels strongly that the CI/CD pipeline
has been instrumental to the project success.

When a commit is to be merged to the products master branch , the commit goes through 16

the following steps before being accepted. If there are any failures the deployment is
stopped, and the team is notified so they can correct the error.

● Test
The full test suite with unit tests, integration tests and system tests.

● Documentation
API documentation for e.g HTTP endpoints are generated. This documentation is a
combination of manually written text and auto-generated snippets of information
about the various endpoints, accepted HTTP verbs, request and response body
JSON structure.

● Packaging
The product in question is packaged in different artifacts with different formats for the
deployment and artifact hosting platforms. Main artifacts being Java JAR and Docker
image for ARXaaS and bdist wheels for PyARXaaS. 17

● Publishing

The packaged artifacts such as documentation, executables and source code are
published to different platforms such as Docker hub, Maven Central and PyPI.

● Deployment (ARXaaS only)

After a new deployment has been completed, the team’s internal Kubernetes cluster
and the client’s NAIS platform deploys the new ARXaaS version.

14 NAIS homepage - https://nais.io/
15 Travis CI homepage - https://travis-ci.com/
16 Git branches - https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
17 Bdist wheels - https://pythonwheels.com/

25

https://nais.io/
https://travis-ci.com/
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://pythonwheels.com/
https://pythonwheels.com/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 27/219

Figure 7 - a successful ARXaaS CI/CD pipeline job on Travis CI

Having a complete CI/CD pipeline setup from day one meant that the team where
continuously gathering feedback on the products. Also, the client could use the features
developed as soon as they were merged into the master branch.

1.5.3 License
All of the products developed for this project are distributed under the MIT License. This is
because NAV IT, the client, is a government agency following a policy where all software that
can be open source should be open source . The MIT license is the default license used by
open source projects at NAV IT.

● ARXaaS License 18

● PyARXaaS License 19

● WebARXaaS License 20

1.6 Future Development
Data anonymization is a rapidly moving problem, and the technical aspect is only a part of
the bigger picture. The team is scheduled to participate in several meetings with NAV IT
development teams and leadership, to work out how to integrate the solution best into the
organization. Plans for future development, stewardship of the project, and legal framework
are being worked out as this report is being written(May 2019). The work the team has
delivered is viewed as an important piece to the further development of NAV IT, as a data
driven organization. The team feels strongly that the combination of focus on software quality
and cooperation, has resulted in a solution that NAV IT has taken seriously. This trust has
resulted in summer internship contracts for all the team members. During the summer

18 ARXaaS License - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/LICENSE
19 PyARXaaS License - https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/LICENSE
20WebARXaaS License - https://github.com/oslomet-arx-as-a-service/WebARXaaS/blob/master/LICENSE

26

https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/LICENCE
https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/LICENSE
https://github.com/oslomet-arx-as-a-service/WebARXaaS/blob/master/LICENSE

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 28/219

internship the team will continue the work on the solution. The decision to open source the
project and open up for outside involvement and usage means the project has the legs to
take on a life outside the walls of NAV IT. Other actors such as DiFi, DNB, The Norwegian
Tax Administration(Skatteetaten) and the ARX development team in Munich, has showed
interest in the project, and future collaboration is being discussed.

1.7 Conclusion
The Anonymization as a Service project has been successful in delivering on the client’s
requirements. The solution, consisting of three separate software products, is built with a
high standard of quality. The team agrees that this is a result of following several
acknowledged practices. The project’s consistent fulfillment of continuous delivery and
compliance to the agile guidelines of Scrum has been instrumental to the team's success.

Figure 8 - of the team completing a Sprint Review with the Product Owner, Robindra

1.7.1 Value delivered
The solution developed delivers value to the client by providing access to ARX’s
state-of-the-art anonymization functionality with integrations to the client’s preferred data
scientist tooling.

The solution is easily adoptable by other interested parties because of the open source
licence. If adopted, the solution can potentially contribute to mitigate issues regarding data
privacy and information leakage on a global scale.

Value for NAV IT
The solution is valuable for NAV IT as a whole, as it provides a well documented
anonymization api to integrate other solutions against and build upon. The solution reduces
friction and effort required in the client’s anonymization process, effectively saving resources
for the client. Providing better anonymization tooling also positively impacts the usage and
quality of anonymization. See the testimonial in the 7.3 Appendix for the client’s own
statement on the impact of the work.

27

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 29/219

Value of this report
The development team has put a lot of time and effort into producing thorough
documentation of the work process and the products developed. The user documentation
offers detailed guidance for end users on setup and how to use the products. Any team
aspiring to undertake similar projects are able to read about the work process of this project,
especially the continuous integration aspects. Further, they can potentially adopt aspects to
their own work process if they so desire.

Value for the team
During the development of Anonymization as a Service the team learned and utilized a
variety of new technologies. We experienced professional product development in the
domain of de-identification. A domain which puts a high premium on reliability and
correctness. The whole team feels a strong sense of accomplishment from the project. We
developed three separate technical products in synchronization with feedback from the
product owner , and we have exceeded our client’s expectation in both the solution’s maturity
and features implemented.

28

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 30/219

2 De-identification
This document is intended to present the problem domain this project aims to tackle. It is
intended for readers without any knowledge of de-identification or anonymization. The team
recommends reading this document before the product documentation, and user manual, as
this document will provide the necessary context to the business domain of the solution.

2.1 Introduction
De-Identification, Anonymization and Pseudonymization are often confused and used with
different intentions. In this document the team has the defined important de-identifications
terms and concepts in accordance with the available literature on the subject, and with
guidance from the product owner.

De-Identification is a common term for reducing the probability that a person can be
identified from a microdata dataset. Microdata datasets are datasets that provide information
on a set of variables for individuals. In practical terms, this means each row in the dataset
represents an individual or entity. Summarizing microdata into aggregates is a common
method to de-identify the data, but this result in high levels of information loss and hinders
other researches from verifying the aggregate or do additional research.

"The aim of anonymizing microdata is to transform the datasets to achieve an
“acceptable level” of disclosure risk. The level of acceptability of disclosure risk and

the need for anonymization are usually at the discretion of the data producer and
guided by legislation."

From Statistical Disclosure Control: A Practice Guide 21

2.2 De-identification overview
De-identification is a critical component in research. It protects the privacy of individuals
contained in a dataset by removing the connection to the individual. A side benefit of this is
the legal ramifications, because once de-identified, a dataset is no longer considered
personally identifiable information (PII). If a dataset does not include PII, GDPR does not
apply or restrict its use . 22

De-identification invariably means removing or obscuring information in the original dataset.
The goal when de-identifying is to remove enough data to be able to confidently classify a
dataset as de-identified, whilst retaining a dataset that can be useful. This means that when
de-identifying a dataset there is always a trade-off to be had between data privacy and data
utility . How hard it is to identify an individual in the dataset (data protection) and how much
value can be extracted from the dataset (data utility). These two interests are always at odds
when de-identifying.

21 Statistical Disclosure Control - https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
22 Data privacy - https://gdpr.eu/data-privacy/

29

https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
https://gdpr.eu/data-privacy/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 31/219

There are two main types of de-identification:

● Anonymization
● Pseudonymization

We will briefly talk about the pseudonymization before moving on to Anonymization which
has been the focus of the teams work and the functionality implemented in the solution are
anonymization features.

2.2.1 Pseudonymization
Pseudonymization is a type of de-identification where the association between data and
person is removed. It achieves this by introducing a new bidirectional mapping between an
individual in the dataset and his or her identifiers. Pseudonymization can be irreversible, in
that case the mapping to the identifiers are deleted. Pseudonymization is regarded as a
weak form of de-identification as the identifiers have only been moved to a separate mapping
(making direct identification harder, but still possible through remaining variables in the
dataset and background knowledge).

2.2.2 Anonymization
Anonymization intends to irreversibly reduce the linkage between an individual and
identifying information in a dataset.

When anonymizing a dataset, attributes are categorized into the following categories:

Attribute Type Description

Identifying Attributes that are directly identifying. e.g. phone number, email,
full name, bank account number

Quasi Identifying Attributes that, while not directly identifying, could be identifying
in combination with other information. e.g. birth date, zip code,
workplace, GPS location data

Sensitive Sensitive Attributes is information that could be damaging if
released, about a person. e.g. voting, medical information,
criminal record

Insensitive These are all other attributes in the dataset. Data points that
neither could identify, nor cause harm to an individual if released.

30

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 32/219

Additionally quasi identifying attributes are further categorized in the following categories:

Type Description

Categorical Categorical attributes are values in a finite set. e.g. gender,
religion, home state.

Continuous Continuous attributes are values in an infinite set. e.g. income,
weight, height. Due to their intrinsic uniqueness, they may be
transformed into categorical variables when anonymizing

2.3 Main anonymization techniques

Generalization Reducing the precision of an attribute. e.g full date of birth
becomes only month and year or home address becomes home
state or even country.

Suppression Replacing a value in a dataset with a null value. The name
“Peter Peterson” becomes 'Peter *'

Micro-aggregation Sets of numeric attribute values can be transformed into a
common value by user-specified aggregation functions.

Subsampling Releasing only a subset of the dataset instead of all the records

2.4 Risk assessment
Re-Identification is the reverse of de-identification and is the primary threat addressed by
laws and regulation . Quantifying the risk of re-identification associated with a dataset is of 23

high importance. The key aspect for re-identification is the uniqueness of quasi identifying
attributes and the uniqueness of the combinations of the attributes. Quasi attributes can be
linked with additional data in the dataset or from external datasets to identify individuals.

23 Privacy-enhancing ETL-processes - https://www.sciencedirect.com/science/article/pii/S1386505618307007

31

https://www.sciencedirect.com/science/article/pii/S1386505618307007

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 33/219

In the literature these are the three types of disclosures that are of importance 24

Disclosure type Description

Identity disclosure

Occurs if an attacker associates a known individual with a
data record. e.g. If the attacker uses external information to
in combination with a dataset to identify a person in the
dataset.

Attribute disclosure

Occurs if an attacker is able to learn some new information
about a person based on the information in the dataset. e.g.
If a dataset show all males over 60 in Oslo has been on
unemployment benefits and the attacker knows a specific
male to fit this description.

Membership disclosure Occurs if an attacker can determine if an individual is in a
specific dataset without being able to identify the specific
record.

Three different threat scenarios are commonly used by researchers 25

● Prosecutor attack model

Under this model the attacker is assumed to a target specific individual and know
data concerning the individual is present in the dataset.

● Journalist attack model
Under this model the attacker is assumed to target an arbitrary individual without
knowing if the individual is present in the dataset. Regarded as a more realistic model
than the prosecutor model.

● Marketer attack model
Under this model the attacker is assumed to aim at re-identifying as many individuals
as possible, without regard to false identifications. The risk of a successful attack can
be expressed as the expected average number of re-identified individuals from the
dataset.

24 Statistical Disclosure Control: - https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
25 Privacy-enhancing ETL-processes - https://www.sciencedirect.com/science/article/pii/S1386505618307007

32

https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
https://www.sciencedirect.com/science/article/pii/S1386505618307007

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 34/219

2.5 Privacy Models
Privacy models also referred to as privacy criteria are used when anonymizing a dataset. In
essence the models define mathematical criteria or properties the released dataset should
satisfy. Anonymization tools such as ARX implement algorithms for transforming a raw
dataset to conform to user-specified privacy models.

Many models have been implemented to prevent the different disclosure types. We will only
introduce the most important here.

2.5.1 K-Anonymity
K-Anonymity ensures that the records for each person contained in the dataset cannot be
distinguished from at least k-1 individuals whose records also appear in the dataset . 26

Groups of indistinguishable records are said to form an equivalence class .

2.5.2 L-Diversity
L-Diversity protects a dataset against attribute disclosure. It does this by ensuring that each
sensitive attribute has at least "l" represented values in each equivalence class . Different
variants exist which differ in how they measure diversity . 27

Types of L-Diversity : 28

1. Distinct l-diversity – The simplest definition ensures that at least l distinct values for
the sensitive field in each equivalence class exist.

2. Entropy l-diversity – The most complex definition defines Entropy of an equivalent
class E to be the negation of summation of s across the domain of the sensitive
attribute of p(E,s)log(p(E,s)) where p(E,s) is the fraction of records in E that have the
sensitive value s. A table has entropy l-diversity when for every equivalent class E,
Entropy(E) ≥ log(l).

3. Recursive (c-l)-diversity – A compromise definition that ensures the most common
value does not appear too often while less common values are ensured to not appear
too infrequently.

2.5.3 T-Closeness
T-Closeness also protects a dataset against attribute disclosure. It ensures that the
distributions of values of a sensitive attribute within each equivalence class must have a

26 K-anonymity - https://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
27 L-diversity: Privacy beyond k-anonymity - https://dl.acm.org/citation.cfm?doid=1217299.1217302
28 Types of L-Diversity - https://en.wikipedia.org/wiki/L-diversity

33

https://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
https://dl.acm.org/citation.cfm?doid=1217299.1217302
https://en.wikipedia.org/wiki/L-diversity

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 35/219

‘distance’ of not more than t to the distribution of the attribute values in the input dataset.
Also for T-Closeness there are several variants which differ in the way they measure the
distance . 29

2.6 Generalization Hierarchies
Generalization hierarchies, simply referred to as hierarchies in the rest of the documentation,
is the most important data transformation mechanism when anonymizing data. Hierarchies
can either be used to directly reduce the uniqueness of attribute values or to form clusters
that will be transformed using further methods, such as microaggregation. Hierarchies are in
essence the rules on how a unique value in a dataset column is to be generalized. The more
fine grained the hierarchy is, the better tools such as ARX or ARXaaS performs. Hierarchies
is a matrix data structure composed of the original value in the first column and more and
more generalized transformations column 1 to n.

Example hierarchy for a set of zip code values using a simple redaction strategy

 0 1 2 3 4 5

0 47677 4767* 476** 47*** 4**** *****

1 47602 4760* 476** 47*** 4**** *****

2 47678 4767* 476** 47*** 4**** *****

3 47905 4790* 479** 47*** 4**** *****

4 47909 4790* 479** 47*** 4**** *****

29 T-Closeness - https://ieeexplore.ieee.org/document/4221659

34

https://ieeexplore.ieee.org/document/4221659

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 36/219

2.7 Anonymizing a dataset
Anonymization of dataset for public release has been thoroughly described, documented and
in some cases put into law by many countries and governing bodies . We will give a short 30

recap of the process.

The process roughly breaks down into the following steps:

1. Determine the release model
2. Determine an acceptable re-identification risk threshold
3. Classify variables
4. Calculate the risk
5. Anonymize the data
6. Assess data utility

The release model is how and to whom the dataset will be made available. This will guide
the risk threshold. A dataset that is to be used by internally employed data-scientists with a
signed NDA has a different risk profile from a dataset which is to be released publicly.
dataset fields are then classified into the before mentioned categories (identifying, quasi
identifying, sensitive, insensitive). Risk is calculated according to the disclosure models
(identity, attribute, membership). If the dataset risk is above the threshold the dataset is
anonymized using privacy models. The act of choosing the right privacy model for the
dataset is also context dependent. But if the dataset contains sensitive attributes a privacy
model which handles sensitive attributes should be employed. Finally the utility is judged.
Different tooling exists to help in this step, ARX also implements a utility analysis tool but 31

this project has not focused or implemented any features for this step of the process.

30 De-identification - https://www.ipc.on.ca/wp-content/uploads/2016/08/Deidentification-Guidelines-for-Structured-Data.pdf
31 ARX | Utility analysis - https://arx.deidentifier.org/anonymization-tool/analysis/

35

https://www.ipc.on.ca/wp-content/uploads/2016/08/Deidentification-Guidelines-for-Structured-Data.pdf
https://arx.deidentifier.org/anonymization-tool/analysis/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 37/219

3 Process documentation
This chapter provides insight into the team’s work process, including method and tools. The
document includes the teams decisions and experiences using new and modern tools and
development processes. This document has high value for users looking to gain insight in
terms of estimation, planning and executing a software project. Readers interested in the
team’s experiences with the work strategy utilized should read this chapter.

3.1 Introduction
This chapter covers the process of the bachelor project work. The initial exploratory phase
with the project owner at NAV IT, planning, execution, the tools and development
methodologies that helped us produce a solution that meets the client’s needs. Significant
space in this document will be allocated to the tools and methodologies. The client signaled
early on, that they wished the project work to follow agile practices. The team decided to use
the Scrum framework as its development process framework.

3.2 Planning and methods
This chapter explains the creation of the team and planning of the project as well as the
planning during the project. The chapter starts with development methods applied by the
team, followed by documentation about project phases and conclusion.

3.2.1 Development methods
The client NAV IT is in the middle of their own digital transformation, there was an immediate
demand for the project and the team members to follow agile practices . The first assignment
the team got back in November was to read the book Accelerate: The Science of Lean
Software and DevOps: Building and Scaling High Performing Technology
Organizations . The book lays out in scientific terms, and with data to back it up, what 32

differentiates high performing and low performing IT organizations. Key takeaways that were
utilized in the project where:

● Build quality into the solution from day one
Invest in tools and processes for detecting and resolving issues as soon as they
appear. See the chapters on 3.2.1.3 Test driven development(TDD) and 3.2.1.5 Code
reviews, for more on how the team handled this.

● Work in small batches
Deliveries consisting of large chunks of work introduces much bigger risks of merge
conflicts. It prolongs the feedback intervals and increases the risk of
misimplementation. See chapter 3.2.1.6 Feature slicing for further elaboration.

32 Accelerate - https://www.oreilly.com/library/view/accelerate/9781457191435/

36

https://www.oreilly.com/library/view/accelerate/9781457191435/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 38/219

● Computers do repetitive tasks

Many bachelor projects are completed with limited thought to the testing, publishing
of user documentation and deploying of the solution. The pitfalls of this can be seen
in the vast collection of OsloMet IT bachelor rapports. Bugs sneak in when the
solutions go too long without deploying to a production(like) environment. When the
deploy process is manual, it will become rarer.

● Continuous integration
Keep branches short lived. In conjunction with working in small batches, continuous
integration is the practice of merging these batches of work into the master branch
continuously. See the chapter on 3.2.1.2 Continuous integration and Continuous
delivery, for more detail. Suffice to say this might be the most important takeaway the
team had from the book.

● Continuous testing
Instead of leaving the testing for the last part of a solution release. The codebase and
every new feature should be continuously tested during development and lifetime.
Without the practice of continuous testing, continuous integration would be reckless.
See the chapter on 4 Test documentation, for a complete overview.

● Continuous improvement
Foster a team environment where continuously asking questions and taking action to
improve technical debt as well as process detail. See the chapter on 3.2.1.1 Agile
work process, for more on how we implemented continuous improvement in the
team.

Our approach was to deliver a minimum viable product, and deliver small features as
increments in order to always have a running application. Close contact with the product
owner was always a high priority, to ensure that the solution was developed to the product
owner's requirements and needs.

3.2.1.1 Agile work process

The team decided to use the Scrum framework to guide the development process. Scrum is
a framework in the agile process family , and as such it was in compliance with our product 33

owner's demands and wishes for an agile development process. The Scrum framework was
chosen because it best modeled the timeboxed nature of the project. Scrum emphasizes
dividing the development into discrete timeboxes. Since the project had a very hard deadline,
it was a natural fit.

33 Agile methodologies - https://www.blueprintsys.com/agile-development-101/agile-methodologies

37

https://www.blueprintsys.com/agile-development-101/agile-methodologies

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 39/219

SCRUM includes concepts that the team uses, and configure them to the team's needs. The
reader is expected to be familiar with these terms.

● Product Owner
The role of the product owner as described in the Scrum Guide is to develop and 34

maintain the product backlog. The backlog is a prioritized list of user stories that aim
to describe value providing features the development team is to implement. Robindra
from NAV IT AI lab was the project's product owner.

● Sprint
Sprint, a time-box of one month or less where work is planned, completed and
delivered. The team worked in two week sprints. At the start of every sprint the team
completed sprint planning and picked the user stories to add to the next sprint
backlog. The team then added the user stories picked for the sprint to the Kanban
board in Asana. The team members choose and assigned the tasks as a group.

● Definition of Done (DoD)
A definition of done was specified for each sprint by the group. An example of this
was that every feature had to be tested before merging into the master branch.

● Daily Scrum
During each sprint the team had daily scrum meetings to keep the rest of the team
updated on each individuals progress as well as to share knowledge in the team.

The following Scrum concepts have been given a little more space in the text. This is to
make it clear how important these practices where to the team. The following two practices
where absolutely instrumental to force the team to understand the client and to keep the
team atmosphere good and spirits high.

34 Scrum Guide - https://www.scrumguides.org/

38

https://www.scrumguides.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 40/219

Sprint Review
The team presented the new features to our product owner at the end of each sprint. Based
on the feedback from the product owner and other NAV IT stakeholders, the team created
new user stories and definitions of done for the next sprint.

Figure 9 - of a sprint review with NAV IT stakeholders

Sprint Retrospective
At the end of the sprint the team had a sprint retrospective, also referred to as a sprint retro.
Starting back in January several team members voiced scepticism for this Scrum practice,
but in the end this had become a team favourite. The goal of this meeting is to serve as a
time and place for airing out team friction. The goal was that each team member leaves the
meeting feeling heard and respected and that the team is strengthened by a better collective
empathy. By the end of the sprint retrospective, the team should ideally have identified
improvements that it could implement in the next sprint.

During the sprint retrospective, the team discussed

● What went well in the sprint?
● What could be improved?
● What will we commit to improve in the next sprint?

The way team team went about this was that each member made post-it notes labeled start ,
stop and continue . The start post-it notes where suggestions of team improvements to be
made in the next sprint. The stop post-it notes where things that had not worked well for the
team or an individual. The continue post-it notes where items that worked well in the sprint
and the team member wanted to keep doing in the next sprint. For examples see the sprints
documented in 3.3 Development process.

39

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 41/219

Figure 10 - of a Scrum retrospective board from a team retrospective meeting

Figure 11 - of a team Sprint Retrospective at NAV IT’s offices

3.2.1.2 Continuous integration and Continuous delivery
Continuous integration is the practice of continuously integrating new work into a product’s
master branch, and it was the most important takeaway from the Accelerate book.
Implementing continuous integration additionally makes a another practice possible;
continuous delivery. Continuous delivery is the practice of automating the software release
process. This fits nicely into the other takeaways such as continuous testing and letting
computers do the repetitive work. When a team wants to practice continuous integration and
continuous delivery they build a CI/CD pipeline . The responsibility of a CI/CD pipeline is to
automate the complete process of integration and release, so that each new change to the
software is efficiently and securely applied to the code base.

40

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 42/219

3.2.1.2.1 CI/CD pipeline
This is the overview of the CI/CD pipelines the team built for the two main products; ARXaaS
and PyARXaaS. The CI/CD pipeline is separated into discrete stages, together making up a
build. If a stage fails the whole build is regarded as failed and the development team is
notified that a CI/CD job has failed.

Figure 12 - Diagram of a CI/CD pipeline

For the CI/CD pipeline to be efficient, it needs to be highly available for all team members,
provide accurate feedback on a build status, and integrate nicely with the version control
host. The team’s choice fell on Travis CI which is a feature rich and professional CI/CD
platform. Travis CI also provides free use of their platform to open source projects.

A developer working on ARXaaS or PyARXaaS interacts with the CI/CD pipeline mainly
through the Github page for the project. The team configured the Github repositories to block
direct merging to master branch. The only way to merge new code into the master branch is
to make a pull request on Github. On Github the requirement were for all CI/CD stages to
pass successfully and for one other team member to accept the changes proposed. Travis CI
spins up a virtual machine and runs the configured stages on the branch, this is referred to
as a CI/CD job. If all the stages passes, it can be merged into to master branch.

Figure 13 - ARXaaS pull request waiting to be merged

41

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 43/219

Afterwards, a team member would be notified that they have been requested to review a pull
request. The team member could then approve or request changes to be made to the code.

CI/CD pipeline stages
The following stages is a overview applicable to PyARXaaS and ARXaaS for more detailed
overview see the chapter on 5.4 PyARXaaS and 5.2 ARXaaS of the Product documentation.

● Static analysis stage
This stage is closely related to testing so a more detailed description can be found in
chapter 4.4.2 Static code analysis . The purpose of the analysis stage is to analyze
the code and the dependencies of the products, and provide feedback to
development team on metrics such as code complexity and vulnerabilities in the code
and dependencies.

● Test
The full test suite is with unit tests, integration tests and system tests are ran to verify
that there are not any regressions and that the new tests are successful.

● Documentation
Documentation is generated from human written text files, versioned with the product
and documentation generated from the source code and tests

● Packaging
The service is packaged in different artifacts with different formats for the deployment
and artifact hosting platforms.

● Publishing
The packaged artifacts are deployed to different platforms and hosts, to make it
available to the users of the solution. This includes source, executable and
documentation artifacts

● Deployment
For ARXaaS, there is an additional step involving deployment of the service and
execution on the platforms used, namely the team’s Kubernetes cluster instance and
the client’s NAIS platform.

42

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 44/219

Figure 14 below shows the CI/CD pipeline for ARXaaS. Note that there are several steps
and services involved that make up the pipeline. As the whole process is automated lots of
otherwise manual labor is avoided and quality and stability of the service is improved.

Figure 14 - Overview of ARXaaS CI/CD pipeline

3.2.1.3 Test driven development (TDD)
Test driven development entails writing the test before writing the code is to be tested. The
practice is somewhat controversial, and the team has deviated from it on occasions. The
team can attest to that the best code in the project codebase has been developed as a result
of this practice.

Figure 15 - showing the process of test driven development

43

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 45/219

A benefit of the practice has been an incredibly robust set of tests and large test coverage.
As of writing this report this is the test coverage on the main products:

ARXaaS

- 93% coverage

PyARXaaS

- 89% coverage

3.2.1.4 Code style
Used Sonarlint in the team members IDE’s to make sure the code conforms to a uniform
code style.

3.2.1.5 Code reviews
Git was chosen as version control host for this project. Before merging a branch into the
master branch Travis, Code climate and SNYK tests had to be passed. When all tests pass a
team member had to make a pull request to get a team member to review the branch in
question before being merged into the master branch.

Figure 16 - Screen grab from a Github pull request waiting for review

Figure 17 - Screen grab from a Github pull request that has been reviewed and accepted

44

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 46/219

3.2.1.6 Feature slicing
The team worked actively on slicing up big features requested by the product owner into
smaller features. After slicing the features, the team evaluated the different features and
decided with the product owner which features where best to implement first. This ensured
that the product owner was in on the prioritization and frequency of deliveries. Deliveries
were made in small increments that provided the most value as fast as possible.

Figure 18 - Example figure of feature slicing

3.2.2 Project phases

3.2.2.1 Initiation
The project started with a get to know meeting at Starbucks Torggata 18.07.2018. Each team
member discussed their expectations for the project and the way forward. Sondre had a
contact person at NAV IT and had talked about a possible bachelor project with them. Our
contact person at NAV IT had mentioned key words such as Kafka, Docker / Kubernetes,
Java, Python, data lakes, data virtualization as possible areas to work with. During this
meeting It was also suggested to recruit a fifth party to the team. The team then contacted
Viktor and asked if he wanted to join the team. After a second get to know meeting Viktor
joined the team.

3.2.2.2 Planning
An information meeting was held with the team and tech leads for Open Data, Tommy and
Gøran from NAV IT. It was determined that the goal of NAV IT was to build a ‘pipeline’, that
makes raw data that NAV sits on available to stakeholders outside NAV (media, private
persons, etc.). This pipeline was to accommodate the entire range from integration with raw
data systems at NAV, to visualization and typical front-end solutions.

The solution that Open Data project from NAV IT wants to deliver, is a common platform /
toolbox for delivering open data to the Norwegian population. The idea was that the team will

45

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 47/219

contribution to this project. The team was to be involved in developing the plan for a specific
solution that was to be implemented to the Open Data project framework.

Concrete features in the Open Data project that the team could participate in was, API -
backend pipeline, Portal - web platform (data.nav.no) and Meta-data system for automatic
generation of visualizations.

The team was given a few task to complete before January 1st 2019. The team was asked to
get to know Docker and Kubernetes and read the Accelerate book. Furthermore the team
was asked to brainstorm ideas for solving ‘How can NAV deliver specific datasets, in a good
and user-friendly manner (user-friendly for developers, media houses, private persons)’.

A proposed idea was to focus on a specific data type. The initial idea was to focus on
treatment time. What kind of issues have the longest treatment time and shed light on it. The
goal was to streamline the assessment time spent on treatment.

At 18.10.18 the team had its first meeting with Eva Hadler to talk about guidance for the
bachelor project. Eva was highly recommended and the team was happy she decided to be
the supervisor for the project. Eva shared her experiences with undergraduate projects and
what was expected.

The group had their first bachelor meeting in 2019. After discussing frameworks and tools,
the team also decided to use Github, Asana, Travis and Slack. The team also decided on the
work days and hours that best suited all the team members.

At this point the project objective was not set in stone, but at the next meeting at NAV IT,
Robindra and Paul presented the data anonymity project to the team. The essence of the
project was to make ARX's functionality available to NAV's systems, and build a framework
that makes ARXs anonymization functionality available to NAVs data scientists. The
functionalities sought after were submission of datasets to the service, and to receive an
anonymized dataset of the desired anonymity level.

The group discussed different approaches to the problem and tools to use. Tentatively the
team planned an overall architecture with Java / Spring backend and Python / Jupyter
Notebooks, Javascript / React frontend and Docker as scalability. The group agreed that this
was a good project with both enough content and room for stretch goals.

The team decided on an English working language for documentation and code to make the
open source project available to everyone. Robindra was named Product Owner and Sondre
got the title as Scrum Master . For the development of the solution, the team decided to use
seven sprints with a duration of two weeks. The remaining four weeks will be used to write
the project report.

46

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 48/219

3.2.2.3 Execution
The project lasted from 08.01.2019 to 23.05.2019 and ended with a presentation of the
solution 14.07.19. During this time the team had workshops and presentations for the NAV IT
staff as well as a presentation for the Agency for Public Management and e-Government35

(Difi). The solution was implemented in the NAV IT system and is now running on the NAIS
platform, Google Cloud and hosted by Maven. The entire group was offered summer
internships at NAV IT to continue development of the solution and all team members
accepted.

3.2.2.4 Project conclusion and documentation
The solution handover took place at NAV IT headquarters at 26.04.2019 where the team
presented the final solution to NAV IT. The team then worked on the project report as well as
online documentation and user manuals until delivery 23.05.2019.

3.2.3 Planning tools

The team decided early to use Asana for sprint planning and project management. The 36

sprints were divided in ‘backlog’, ‘to do’, ‘in progress’ and ‘done’. This was displayed in a
Kanban board in Asana and allowed all team members to see each team members tasks
and progress. The larger backlog items were divided into smaller subtask where each
subtask was assigned to a team member. The tasks also had notes on possible solutions or
tools to use for completing the task.

Figure 19 - Example Asana Kanban board

35 Difi - https://www.difi.no/om-difi/about-difi
36 Asana homepage - https://app.asana.com/

47

https://www.difi.no/om-difi/about-difi
https://app.asana.com/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 49/219

After each sprint retro meeting with the product owner the team created new user stories and
tasks for the backlog. During sprint planning the team decided which task to bring to the new
sprint as well as team members assigned to the task. The team tried to keep the tasks and
features small enough to be completed in one sprint. To get an overview of the entire project
the team created a Gantt diagram that gave the team a great tool to keep track of the sprint
and the time left for the project.

Figure 20 - Gantt Diagram

48

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 50/219

3.2.4 Competence building
The team used literature and courses, both online and through presentations held both by
the product owner and Sondre Halvorsen for competence building.

3.2.4.1 Literature
Prior to the start of project the team was given an assignment, to read a book called
‘Accelerate’ by Nicole Forsgren. The team learned different working methods, that makes
software development more efficient. These working methods can be found in chapter 3.2.1
Development methods.

Figure 21 - Image of Accelerate book

3.2.4.2 Courses
Includes both online courses, presentations and workshop the team participated in.

3.2.4.2.1 Online Courses

The team used Pluralsight and Safari books for online competence building. 37 38

Pluralsight courses:

● Scrum fundamentals 39

● Spring fundamentals 40

37 Pluralsight - https://www.pluralsight.com/
38 Safari books - https://www.oreilly.com/?utm_source=my&utm_medium=referral&utm_campaign=classic
39 Scrum fundamentals - https://www.pluralsight.com/courses/scrum-fundamentals
40 Spring fundamentals - https://www.pluralsight.com/courses/spring-fundamentals

49

https://www.pluralsight.com/
https://www.oreilly.com/?utm_source=my&utm_medium=referral&utm_campaign=classic
https://www.pluralsight.com/courses/scrum-fundamentals
https://www.pluralsight.com/courses/spring-fundamentals

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 51/219

● Maven fundamentals 41

Safari books:

● Spring with microservice 42

The team used Pluralsight to improve their knowledge of Scrum, and to make sure that
everyone in the team had the same understanding of Scrum.

To have a better understanding of Spring boot and microservice, the team utilized the ‘Spring
fundamentals course’ on Pluralsight and ‘Spring with microservice’ on Safari books. This
ensured that the team could correctly set up the service by using Spring boot.

The Maven Fundamentals course was used to learn about the build structure of Maven. The
team decided to use Maven as the dependency management tool for Spring boot.

3.2.4.2.2 Presentations and workshops

To improve the team’s knowledge on Python programming, Sondre held a Python
programming workshop. This ensured that the team was up-to-date on Python programming
and made sure that everyone had at least basic Python programming knowledge.

The Python programming course slides can be found here:
https://sonhal.github.io/googlecodelabs-python-kurs/nav-python-course/index.html#0

The product owner Robindra Prabhu held a introductory presentation on de-identification to
improve the team’s knowledge on data anonymizing. Through the presentation the team
gained a better understanding of the different privacy models used, as well as the different
re-identification risk involved when anonymizing a dataset.

3.2.5 Budget
The budget for the project was 200 NOK for the Google Cloud service. The team’s software
was either student licensed or free to keep the cost of the project to a minimum.

41 Maven fundamentals - https://www.pluralsight.com/courses/maven-fundamentals
42 Spring with microservice - https://www.safaribooksonline.com/library/view/spring-microservices-with/9781789132588/?ar&orpq

50

https://sonhal.github.io/googlecodelabs-python-kurs/nav-python-course/index.html#0
https://www.pluralsight.com/courses/maven-fundamentals
https://www.safaribooksonline.com/library/view/spring-microservices-with/9781789132588/?ar&orpq

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 52/219

3.3 Development process
This chapter is meant to give the reader detailed insight into the sprints used to develop the
solution.

3.3.1 Descriptions of the sprints

The team worked in two week sprints, and used seven sprints to develop the solution. There
was also a sprint 0 before the team started work on the solution. This chapter contains
detailed descriptions of the sprints. Each sprint is divided into:

● Duration
● Summary
● Backlog
● Goals
● Sprint Review
● Sprint retro

3.3.1.1 Sprint 0

Duration : Monday 07.01.19 - Friday 18.01.19

Summary:

The team finalized the project assignment with NAV IT and started working on writing the
pre-project report.

The team created:

● A repository in the version control host Github was created, where the team
members had the opportunity to start experimenting and exploring the ARX library.

● Created a repository in the version control host for the solution service and started
preparing the REST controller.

● The project webpage.

Backlog:

[COMPLETED] Finalize the project with NAV IT

[COMPLETED] Write the pre-project rapport

[COMPLETED] Create ARX Playground project for Testing and exploring the ARX core

51

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 53/219

library.

[COMPLETED] Create Java Spring boot repository on Github for development of the
service.

[COMPLETED] Publish the project webpage

Goals:

● We did not create any sprint goals for this sprint

Review:
The team finalized the project with NAV IT. The team did group education in Scrum and
Python programming. As well as completing the entire backlog. The team presented the
pre-project rapport to Eva the teams Bachelor thesis supervisor. Eva approved the teams
pre-project rapport, but pointed out important areas of improvement for the final rapport.
Eva also provided guidance for the requirements document the group has to finalize by
20.01.19

Retro:
In this first unofficial sprint we did not do a sprint retro

3.3.1.2 Sprint 1

Duration : 21.01.19 - 01.02.19

Summary:

The team started working on implementing the continuous integration workflow on both the
service and client repository in the version control host Github. Started with implementing
a feature to anonymize a dataset with a k-anonymity privacy model.
Finished implementing the spring controller class in the service, and started to build a
docker image and published the service to google container registry.

Backlog:

52

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 54/219

[COMPLETED] Implement python wrapper API for k-anonymity

[COMPLETED] Implement Spring Controller class in the service

[COMPLETED] Build service in a docker image

[COMPLETED] Publish AaaS backend docker image to Google container registry

[COMPLETED] Setup travis for PyAaaS

Goals:
In sprint 1 we defined this definition of done (DoD) as part of our Sprint:

● Unit testing implemented:
○ Coverage for normal case
○ Coverage for sensible edge cases

● Testing running in Travis
● JavaDoc on Classes and methods
● Code Review completed, min=2
● Code is complaint to linter
● Code complaint to Static code review

Review:
Participants:

● Robindra
● Gøran
● Sondre
● André
● Viktor
● Jeremiah
● Julian

Delivery:
https://github.com/OsloMET-Gruppe-8/PyAaaS/releases/tag/Release-0.0.2
AaaS
The team presented the delivery from Sprint 1. A Python wrapper package and Spring
boot backend for ARX functionality. The current feature set is anonymization of data (
pandas.DataFrame, csv string) with k-anonymization.

Feedback from Product owner:

53

https://github.com/OsloMET-Gruppe-8/PyAaaS/releases/tag/Release-0.0.2

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 55/219

The delivery for sprint 1 has delivered to expectations. The choices regarding the public
api exposed by the python package was approved.

Requests for the next Sprint:
(Not ordered by priority)

● Implement deploy pipeline to NAIS platform
● Implement support for L-Diversity Privacy Model
● Documentation and example cases for non-experienced users
● Implement Hierarchy Generator
● Create NAV/Norway specific Hierarchies
● Return metadata from anonymization with the anonymized dataset
● Provide easy integration for data package metadata format and metadata from

anonymization
● Provide continuous feedback to user when completing subactions with Python

wrapper

Retro:
Good not ordered by priority:

● Good first increment from sprint 1

Challenging

● Frustration with new technologies
● Challenges with work documentation in Agile process
● Time for learning

3.3.1.3 Sprint 2

Duration : 04.02.19 - 15.02.19

Summary:
The team started working on implementing new features , anonymizing a dataset with
L-diversity privacy model and receiving a re-identification risk profile when analyzing a
dataset.

The team started working on creating a javadoc for the service.

54

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 56/219

Created a feature in the client where the different settings to be used to anonymize a
dataset is shown before being sent to the service.

Backlog:

[INCOMPLETED] As a data-scientist, I would like to retrieve analytics of re-identification
risk for my dataset.

[INCOMPLETED] As a data scientist I would like to be able to use L-Diversity as a
Privacy Model for my dataset.

[INCOMPLETED] As a user of the system, I would like java-docs for easy functionality
lookup.

[COMPLETED] As a developer using PyAaaS I would like to receive information about
the configurations about my anonymization payload before I run the anonymization
process.

Goals:
Test Coverage:

● AaaS test coverage 55%
● PyAaaS maintain 80 %
● PyAaaS Increase unit tests vs integration tests

Documentation

● AaaS Javadoc:
○ All Classes
○ All Controller methods
○ All Service methods
○ All ARX util methods

● PyAaaS docstring
○ All classes
○ All class methods
○ Complex internal functions/methods
○ public functions

● Refactor and reduce Technical debt
○ Split ARX wrapper in classes

Review:

55

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 57/219

Started working with implementing javadoc.
Started back-end implementation of analyzing against re-identification risk.
Started back-end implementation of l-diversity risk.
Implemented functionality to programmatically display information from my request object
in the frontend.
Started implementing maven deployment and generation of PGP-key pair.

Retro:
Completed 18.02.19
We timeboxed 1 hour monday to complete Sprint Retro for Sprint 2 (week 6-7)

Concrete improvements:
- Every project member is responsible for writing a short summary of their day in

the project diary
- We schedule a debrief meeting (10 mins per member) before each Sprint

Review for sharing of concrete features they have worked on
- We will make ourselves available for the Product owner(Robindra) at least one

day a week
Good:

● Fun at work
● Independent working
● On schedule - right amount of work
● Good increments
● Good motivation for work
● The team is good at giving feedback
● Stabile and good progression
● Good cooperation and sharing of knowledge
● Good teamwork when taking decisions
● The team uses Scrum well
● Good attendee's = 100%
● Good cooperation when developing solutions
● Realistic expectations

Improvements:

● Avoid blocking tasks
● Splitting in group of skills - risk of isolation
● Team members are arriving late for work in the morning
● Lots of interruptions
● Time is used for other school work meant for bachelor work.
● Challenges with Python skills
● Get better at proposing improvements to the entire team.

56

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 58/219

● Improve focus in time boxed events
● Improve effort in writing reports
● Improve handling of blocked task
● Improve focus on product owner

3.3.1.4 Sprint 3

Duration : 18.02.19 - 01.03.19

Summary:
Finished implementing the analyzation feature for the service and client. Finished
implementing the different L-diversity privacy model for the service. Continued to work on
more documentation for the javadoc.

Started working on implementing a feature in the continuous integration pipeline, to build a
docker image of the service and publishing it to the google cloud repository. Started
exploring the possibilities on implementing a feature for global value generalization as a
transformation scheme.

Backlog:

[INCOMPLETED] As a data scientist, I would like to be able to set a global value
generalization as my transformation scheme for column field.

[INCOMPLETED] As a data engineer supporting the ARXaaS service, I would like to be
able to deploy the service to a docker container environment.

[COMPLETED] As a user of the system, I would like java-docs for easy functionality
lookup.

[COMPLETED] As a data scientist, I would like to be able to use ℓ-Diversity as a Privacy
Model for my dataset

[COMPLETED] As a data-scientist, I would like to retrieve analytics of re-identification
risks for my dataset.

Goals:

57

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 59/219

● Test Coverage:
○ AaaS test maintain 80%+
○ PyAaaS test maintain 80%+
○ create AaaS integration tests for new and old functionality

● Documentation:
○ AaaS Javadoc

■ All Classes
■ All Controller methods
■ All Service methods
■ All ARX util methods

○ PyAaaS docstring
■ All classes
■ All class methods
■ Complex internal functions/methods
■ public functions

Goals from sprint 2 continued in sprint 3:

● Every project member is responsible for writing a short summary of their day in the
project diary.

● We schedule a debrief meeting (10 mins per member) before each Sprint Review
for sharing of concrete features they have worked on.

● We will make ourselves available for the product owner(Robindra) at least one day
a week

● Refactor and reduce Technical debt
○ Split AaaS ARX wrapper in classes
○ Split PyAaaS
○ AnonymizationPayload class

Review:
Implemented the feature to retrieve analytics of re-identification risks for the dataset.
Implemented generation of javadoc in maven and automatically deploy it to an online
service for hosting using travis.
Split the ArxWrapper back-end class into modules.
Fully implemented the use of L-diversity and its variants.
Successfully deploying to maven central with hosting of the javadoc.
Generate PGP-key pair and encrypt all the jar-s and pom file upon deployment.
Sonatype authentication upon deployment.

Retro:
We are going to keep concrete improvements from the last sprint. This has worked well for
the team and the product owner.

58

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 60/219

Every project member is responsible for writing a short summary of their day in the project
diary.

We schedule a debrief meeting (10 mins per member)before each Sprint Review for
sharing of concrete features they have worked on.
We will make ourselves available for the Product owner(Robindra) at least one day a
week.

The group did a Start-stop-continue session
Where each team member writes down at least one thing for each the three categories.

Start:

● If we have to change workplace or time. Try to do it in daytime the day before
● Start documenting completed features
● Star increasing documentation frequency?
● Python course?
● Start focus on building features

Stop:

● Stop coming a little late
● Stop overestimating how much we can do in a sprint
● Stop late meeting changes when we don’t need to. Try do it in the daytime
● Stop assuming that someone else will fix it

Continue:

● Continue being open and helping each other
● Continue working dynamically
● Continue planning daily schedules
● Continue Planning daily schedules
● Continue showing up at time
● Continue with good moral
● Continue daily individual project diary
● Continue to find errors
● Continue to take care of each outer
● Continue to keep product owner in focus

59

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 61/219

Figure 22 - Sprint retro Start, Stop and Continue

3.3.1.5 Sprint 4

Duration : 03.03.19 - 15.03.19

Summary:
Created a new increment of PyAaaS and ARXaaS with support for anonymizing datasets
with Privacy Models and already generated hierarchies, and analyzing risk profile of a
given dataset.

● Implemented the l-diversity feature for the python client. Fixed a bug when reading
the python client where csv files were not read with utf 8.

● Implemented a feature to analyze a dataset before anonymizing.
● Started working on implementing a feature to receive anonymization analytics and

better error messages when assigning a hierarchy on non-quasi-identifying
attributes.

60

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 62/219

● Started working on a quick step-by-step guide on how to use the client and its
features.

Backlog:

[INCOMPLETED] As a data scientist, I would like the possibility to choose more than
one set of anonymized dataset output, Currently only showing best  ranked result.
Possibility to choose subsets of data ranked as 2 or 3 if the user needs less washed
data-set. 

[INCOMPLETED] As a data scientist, I would like to get anomyzation analytics for a
given dataset.

[INCOMPLETED] As a data scientist, I would like to get a error message if we assign a
hierarchy for a dataset field that has a sensitive attribute.

[INCOMPLETED] As a data scientist, I would like a documentation to guide me through
the complete process of anonymizing a dataset using Pyaaas and ARXaaS

[INCOMPLETED] As a data scientist, I would like to be able to set a global value
generalization as my transformation scheme (hierarchy) for column field 

[COMPLETED] As a data scientist, I would like to be able to analyze my dataset before
anonymization

[COMPLETED] As a data-scientist, I would like Pandas read functionality for utf8.
Æ,Ø,Å is currently not recognized.

[COMPLETED] As a data-scientist, I would like the front-end to handle data field
columns that contain spaces. l-diversity function currently splits the column names
containing spaces.

[COMPLETED] [BUG] ARXaaS cannot handle CSV files using other than "," separator

[COMPLETED] As a project team, we would like Travis to deploy ARXaaS

Goals:
Test Coverage

● AaaS test maintain 80%+
● PyAaaS test maintain 80%+
● Create AaaS integration tests for new and old functionality

61

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 63/219

Documentation:

● AaaS Javadoc
○ All Classes
○ All Controller methods
○ All Service methods
○ All ARX util methods

● PyAaaS docstring
○ All classes
○ All class methods
○ Complex internal

● Functions/methods
○ public functions

Goals from Sprint 3 continued in Sprint 4:

● Every project member is responsible for writing a short summary of their day in the
project diary.

● We schedule a debrief meeting (10 mins per member)before each Sprint Review
for sharing of concrete features they have worked on.

● We will make ourselves available for the PO(Robindra) at least one day a week.
● Refactor and reduce Technical debt.

○ Split AaaS ARX wrapper in classes.
○ Split PyAaaS AnonymizationPayload class.

Review:

● Implemented a new model that fixed separator problem when making a Data object
in the backend.

● Implemented a fix for hierarchies overwriting attribute types of dataset fields.
● Implemented a function to analyze a dataset before anonymizing.
● Importing csv with utf-8 support.
● Fixed a bug when setting L-diversity with white spaces on dataset field name.
● Splitting out ARXWrapper into domain specific classes.
● Refactored the backend model for better communication with the domain.

Retro:
The group did a Start-stop-continue session
Where each team member writes down at least one thing for each the three categories.

62

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 64/219

Start:

● Think about expanding to new features (logging, encryption, webpage).
● Take more tasks.
● Finalizing the project structure so we can working in parallel more easily.
● Start Landing PyaaaS.
● Start stretch goal planning(what can we get done in time).

Stop:

● Naming things imprecisely, if unsure ask?.
● Underestimating how much we can do in a sprint.
● Slacking on docs, logs and reports regarding the project.
● Need more structured sprints with a more thought out planning phase.

Continue:

● Communicating problems etc.
● Being motivated, showing up on time
● Looking for ways to improve
● Pair programming
● Motivation
● Attendance
● Challenge ideas, assumptions and decisions
● Listening to the users, and taking their needs into account
● Continue feedback loop with Robindra
● Continue with good work discipline(Don’t get lazy) and stay focused.

3.3.1.6 Sprint 5

Duration : 18.03.19 - 31.03.19

Summary:
ARXaaS went into production on the NAIS platform. The team implemented HTTPS
support and configuration of HTTPS. Metrics from the service was made available through
Spring boot actuator and prometheus endpoints. The team implemented logging service
using Log4j. Exceptions are now returned to client with descriptive HTTP status. Risk
profile has been made more rich with distributed risk as a new data point and attacker
success rate. Metrics from anonymization like attribute generalization is now returned with

63

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 65/219

the anonymized data. Time elapsed when anonymizing is also returned. Properties of the
Privacy Models used in anonymization are included. Service now also has a subpage for
documentation of the service and it's endpoints using Swagger. Refactoring of the domain
models is on-going.

Backlog:

[INCOMPLETED] As a data engineer, I would like to have proper logging from a running
ARXaaS application

[INCOMPLETED] As a maintainer, I would like PyAaaS and ARXaaS to be as decoupled
as possible

[INCOMPLETED] As a data scientist I would like metadata on the anonymization
performed on a given dataset

[COMPLETED] As a data scientist, I would like ARXaaS to be OpenAPI compliant so
functionality can easily be discovered and used

[COMPLETED] As a data scientist, I would like to have a richer risk profile for my
dataset

[COMPLETED] As a data scientist, I would like descriptive exceptions when something
went wrong.

[COMPLETED] As a data engineer i would like operational information about the running
application

[COMPLETED] End to end SSL Encryption between ARXaaS and clients

Goals:

Used the same goals as in sprint 4

● Pair-program on features – Sondre is taskmaster
● Make sure product is shippable at end of Sprint – Julian is taskmaster
● Make sure decisions are documented – Viktor

Review:
The team presented the implemented features from Sprint 5 to Erik and Robindra.
Robindra requested the team to present the project on Fagforum for kunstig
intelligens/data science i offentlig sektor.

64

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 66/219

Wishes for next Sprint by Robindra :

● T-closeness (with more models if possible/easy)
● Create presentation
● System dynamic for changes in the ARX project

Notes from team:

● More integration tests
● Increase test coverage(jacoco to properly read junit5??)
● After implementing a new feature present it to team
● User documentation for setup of ARXaaS
● User documentation for PyAaaS(Sphinx)

Retro:
The group did a Start-stop-continue session
Where each team member writes down at least one thing for each the three categories.

Start:

● Researching before building
● Learning ARX system/data
● Learning de-identification
● Refactoring
● Following best practice
● Pair-programming
● More pair-programming
● More smaller commits/pull-request
● Precise commits/pull-request
● Invest more time into making tasks more well defined
● Take small breaks when the air in the room is bad.
● More Java courses to improve my code quality

Continue:

● Challenge assumptions
● Moral/motivation
● Questioning

65

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 67/219

● Attendance
● Efficiently dividing tasks among team members
● good code reviews
● good team cooperation
● good communication
● team is solution orientated

Stop:

● Long/big pullreqests
● Big pull-request
● Adding too many tasks to sprint?

3.3.1.7 Sprint 6

Duration : 01.04.19 - 12.04.19

Summary:
The project team renamed PyaaS to PyARXaaS, to better align the product naming with
the service.

The group prepared and had a presentation at DiFi about the bachelor project, and had a
workshop with NAV data scientist on analyzing and anonymizing a dataset.
Started working on the Web app, that can connect to the analyze end point. Implemented
to types of T-closeness that can be used to anonymize a dataset. The team decided not to
implement the 3rd type of T-closeness as this was a bigger task than expected and would
take a whole new sprint to fulfill. Fully implemented SSL encryption and created
documentation on how to use it. Finished implementing metadata on the anonymization
performed on a given dataset. Started PyARXaaS documentation in sphinx. Implemented
edge case test and integration test of the end points.

Backlog:

[COMPLETED] as a data interested employee in NAV I would like to be able to analyze
the risk profile of a given dataset in a web app

[COMPLETED] As a data scientist I would like that ARXaaS has been stress tested and
what load I can expect the system to handle 

66

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 68/219

[COMPLETED] As a developer on the bachelor project I would like the endpoints to
have integration tests with edge cases and data content correctness tests (using ARX
GUI as fasit) 

[COMPLETED] Implement T-closeness(++) Privacy Model in service and Python client 

[COMPLETED] Create Presentation for AI/data science forum

[COMPLETED] as a data scientist I would like metadata on the anonymization
performed on a given dataset

[COMPLETED] End to end SSL Encryption between ARXaaS and clients

Goals:

● By the end of the Sprint the team wants to be able to say the product is usable by
data scientist in NAV

● Test coverage on ARXaaS 70%++, Integration tests for all main endpoints with end
case coverage

Suggestions for Sprint 7 backlog:

● Create presentation for AI user forum - H
● Implement T-closeness(++) Privacy Model in service and Python client
● As a data scientist I would like that ARXaaS has been stress tested and what load I

can expect the system to handle
● As a developer on the bachelor project I would like good test data to write tests

with
● As a developer on the bachelor project I would like the end points to have

integration tests with edge cases and data content correctness tests (using ARX
GUI as fasit)

● As a NAV employee in I would like a web application to anonymize data with
K-anonymity and L-diversity and imported csv hierarchies

● As a data scientist I would like to create hierarchies for my dataset using the
ARXaaS service

Bugs to fix:

● Return data from anonymization does not have correct attribute types

Review:

The team completed the entire backlog and are pleased with the progress made.

67

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 69/219

Retro:
The group did a Start-stop-continue session
Where each team member writes down at least one thing for each the three categories.

Start:

● Thinking deployment/shipping (applications/packages/docs/ci pipeline)
● Thinking handover in regards to code/docs
● Reaching out for assistance on hard features
● Bringing in team members on feature work (pair-program)
● Better motivation after assigned task is done
● Better planning and feedback before and after presentation/workshop
● More peer programming
● More pictures
● Writing documentation more targeted at the user

Stop:

● Winging it (Maybe small practice round)
● Not logging enough in asana when performing a task
● Not using branches in webarx, must make it easier to work in parallel
● Workshop

○ not tested
○ no dry run

Continue:

● Take ownership of the product
● Learning about ARX system
● Learning about anonymization
● Pair-programming when possible
● Reviews and merging principles
● Attendance
● Motivation
● Teamwork
● Tasks done
● Good feedback
● Customer happy
● Group still positive and working hard
● Being productive, and limiting the scope of tasks

68

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 70/219

Figure 23 - Sprint retro

3.3.1.8 Sprint 7

Duration : 15.04.19 - 26.04.19

Summary:
The group prepared a demo of the final presentation for Eva about the bachelor project.
The group also had a presentation for the sprint review.

Started implementing the different features for the Web app. All feature except for
hierarchy generation are now available on the web app. The web app still needs a design
overhaul.

Implemented suppression limit to be taken in a parameter, as well as logging the limit
used. The suppression limit is now available on both the python client and the web app.

Privacy models used to anonymize the dataset are now logged as well.

Prepared different datasets and hierarchies to be load tested on the service.

Implemented hierarchy generation end-point on the service and is now available on the
python client.

Backlog:

69

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 71/219

[INCOMPLETED] Visualization/Description of Re-identification risk (K=?)

[COMPLETED] As a NAV user I would like a intuitive webapp to analyze and anonymize
datasets

[COMPLETED] ARXaaS hierarchy generation

[COMPLETED] Python wrapper hardening

[COMPLETED] Load testing using proper "hard to anonymize datasets"

[COMPLETED] As a Data scientist I would like the suppression limit to be passed as a
parameter

[COMPLETED] As a data scientist, I would like ARXaaS to provide richer logging

Goals:

● The team prepares for handover on all technical deliveries - Andre
● At Least two persons has knowledge on a given feature - Sondre

Review:

The team is proud to hand over the solution to NAV IT. The teams focus will now be on the
project report.

Retro:
The group did a sprint retro session for the entire project divided in:

● Positive Learnings
● Negative Learnings
● Surprises

Where each team member writes down at least one thing for each the three categories.

Positive Learnings:

● Continuous Integration worked really well (thanks, Accelerate!)

70

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 72/219

● Knowledge is well shared and spread across team members
● Sprint retro has worked well
● Solid agreement on decisions and productive discussions
● Spring Boot is a good framework for creating professional web applications
● Time spent on sprint planning makes time spent elsewhere more efficient. Time

boxing worked well
● Great team
● Pair programming has worked really well
● Delivered a production worthy, whole product
● Test driven programming worked well
● Learning fullstack/professional product development
● Pair-programming
● The importance of keeping everyone up to date and engaged
● The importance of planning well ahead, and having everyone agreeing on the

decisions along the way
● Scrum retro has worked well
● Software
● Share knowledge
● Continues delivery

Negative Learnings:

● Preparing for workshops, presentations has been underprioritized
● Creating software is time consuming, and cannot always be produced effectively

by a single worker
● Taking time off in the middle of the semester is stressful
● Refactoring is tough
● Definition of Done and speccing is super hard, time consuming
● Estimating time requisites takes too much effort
● Learning new tech, especially Python is tough
● Creating good user stories is very demanding,
● Perhaps format could be less stale if it had been less static and repetitive. Also

more knowledge on user stories from product owner, better collaboration on
creating them.

● Need agile coach?
● Software takes time, nobody can do it all alone
● Prepare better for workshops and presentation

Surprises:

● Lists and maps are pretty useful
● Putting effort into aligning team is valuable
● Very little time loss/waste from unfortunate events
● Pair programming requires some scheduling
● Knowledge silos appear fast

71

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 73/219

● Effort when aligning team
● Meetings and admin takes a lot of time
● Sprint retro

72

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 74/219

3.3.2 Development tools

Asana - Project management software 43

The team used Asana as an agile kanban board throughout the project. It proved
useful for declaring the time box for sprints, dividing the sprints into user stories, and
assigning the user stories as tasks for team members.

Git - Version Control System 44

Git proved useful during the project’s development phase, where multiple team
members were altering the code base simultaneously. The team’s knowledge of Git
was already at an acceptable level prior to the project’s initialization. As a result, Git
contributed to allow for seamless and continuous cooperation and merging of the
code base. From the perspective of continuous integration , Git shone bright during
the development and report writing of the project.

GitHub - Version Control Host 45

The entire code base of the solution is backed up in GitHub’s cloud storage. Pull
requests was perhaps the most useful feature that GitHub offered to the team. Pull
requests place certain requisites that must be fulfilled before a merge can be made to
the master branch. This way the team could assert the quality of the code by
reviewing each other's work, and even utilize addons that could further verify the
code quality before a merge. The team also utilized some of the useful GitHub Apps
and Third Party Applications, namely Travis, CodeClimate and Snyk, and they are
covered in the following tool declarations.

Travis CI - Continuous Integration (CI) Service 46

Travis provided the team with a virtual machine that could run, test and deploy code
following the desired sequence and configuration defined by the team, invoked by
changes to the project’s master branch. The invocation of the functionality could also
be controlled, for instance so that all releases to the project’s master branch were
tested, but only tagged releases were deployed. This way, Travis’ functionality proved
extremely useful to the team in regards to continuous delivery .

CodeClimate - Static code analysis service 47

One of the steps involved in Travis’ CI/CD pipeline included running tests on every
pull request to the project’s master branch. CodeClimate would read the results from
those tests and report on various discrepancies in the code with distinct feedback.
For instance, the GitHub repositories were configured so that pull requests with failed

43 What is Asana and its purpose - https://asana.com/developers/documentation/examples-tutorials/overview
44 Git - https://git-scm.com/
45 Github - https://github.com/
46 Travis, Continuous Integration platform - Core Concepts https://docs.travis-ci.com/user/for-beginners/
47 CodeClimate - https://codeclimate.com/quality/

73

https://asana.com/developers/documentation/examples-tutorials/overview
https://git-scm.com/
https://github.com/
https://docs.travis-ci.com/user/for-beginners/
https://codeclimate.com/quality/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 75/219

tests or decreased test coverage would be rejected until acted upon. CodeClimate
would also offer a visual presentation of the result, including information about test
coverage percentage before and after, and a grading for code maintainability based
on duplication, cyclomatic complexity, cognitive complexity, and structural issues.
Read chapter 4.4.2 Static code analysis, involving static code analysis in the test
documentation for specific clarification.

Snyk - Analyzes the dependencies used in the project for known vulnerabilities. 48

Notified the team of any vulnerabilities and potential risks in the repo through
automated updates to communications channels like Slack. Read more about SNYK
and its’ purpose in the project in chapter 4.4.3 Vulnerability analysis, of the test
documentation.

Slack - Professional team communication application 49

Slack offered the team a tidy and organized instant messenger experience, optimized
for groups and organizations. The team’s most common use case for Slack was quick
coordination and information sharing.

JetBrains IntelliJ - Integrated Development Environment [Java] 50

The team utilized Intellij as the GUI for Java programming, and it was primarily used
for developing ARXaaS. In short, it offered the team powerful static code analysis and
useful integrations with Git (VCS) and Maven (build/dependencies).

JetBrains PyCharm - Integrated Development Environment [Python] 51

PyCharm is IntelliJ’s counterpart for development in Python, and was utilized for
building PyARXaaS. Its’ integration with pypi (Python Package Index) allowed for
seamless access to critical Python tools like Jupyter Notebooks.

3.3.3 Lessons learned during development
The team learned that setting up a Continuous Integration pipeline and developing in
increments was very productive. This ensured that by the end of every sprint a stable
product was delivered, this also made developing new features more efficient.

Working agile with Scrum was highly productive and ensured that the desired functionality of
the product was consistently delivered. The continuous communication with the product
owner ensured strong confidence within the team, while also ensuring that the end solution
fulfilled the specifications. One of the biggest surprises was the Sprint retro meetings worked
so well. The team had an opportunity to reflect on the last sprint and improve the next Sprint.

48 Snyk - https://snyk.io/
49 Slack - https://api.slack.com/#read_the_docs
50 Intellij- https://www.jetbrains.com/idea/
51 PyCharm - https://www.jetbrains.com/pycharm/

74

https://snyk.io/
https://api.slack.com/#read_the_docs
https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 76/219

3.4 Product specification
Throughout the project, feedback was continuously exchanged with the product owner as a
result of the team’s agile working strategy. In order to fulfill the product owner’s requests, the
team needed to continuously verify, reconstruct and re-prioritize tasks, shaped as user
stories. The user stories would eventually form the core of our product specification, which
will be the topic at hand for this subchapter.

3.4.1 Main specifications

The system will provide access to anonymization tools for data scientists at NAV IT. A data
scientist should be able to anonymize tabular datasets based on user-specific configurations.
Configurability includes privacy models, column attribute types and transformation models
that determine how much data will be lost in the resulting anonymized dataset.

An example use case could involve a workflow where the data scientist is manipulating a
dataset, and requires dynamic analysis of the data’s anonymity metrics. Another use case
could involve integrating the system in a data pipeline to provide data analytics and
anonymization capabilities.

Deliverables

● Python Package - working title: PyAaaS
○ Python package wrapper providing abstracted access to the backend service.

● Web Service - working title: AaaS
○ Java Spring web service.

3.4.1.1 System Diagram
Jupyter notebook is a common user interface among data scientists, and will be a important
platform for the system to support. In a Jupyter Notebook a data scientist that wishes to
anonymize or analyze a dataset will import a Python package which wraps and abstracts the
backend service. The backend service utilizes the ARX library and Spring framework to
deliver the anonymization and analytics functionality as a web service. The service is
packaged as a Docker container.

75

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 77/219

Figure 24 - System diagram

3.4.1.2 Requirements
The collection of system requirements defined in collaboration with the client(NAV IT - AI lab)

3.4.1.2.1 Functional requirements
● The system will provide the ability to complete data anonymization with the provided

user configurations on tabular datasets.
● The system will provide the ability to analyze re-identification risks on tabular

datasets.
● The system will provide the ability to configure the Privacy Models to use in the

anonymization.
● The system will provide the ability to configure data Attribute Type to use in the

anonymization.
● The system will provide the ability to configure the Transformation Models to use in

the anonymization.
● The system will provide the ability to produce a visual presentation of data anonymity

metrics.
● The system will provide the ability to compare data from before and after data

anonymization.

76

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 78/219

● The system will be able to consume data in a variety of formats including

(pandas.DataFrame, path to csv file, url to data resource, csv string, JSON).
● The system will be able to deliver the anonymized dataset in a variety of formats

including (pandas.DataFrame, csv file, JSON).
● The system will be able to deliver metrics about the anonymization in a variety of

formats including (pandas.DataFrame, csv file, JSON, Data Package).
● The system will provide the ability to produce data package metadata regarding the

anonymization process that has been completed on the dataset and the relevant
metrics.

3.4.1.2.2 Non-Functional Requirements

3.4.1.2.2.1 Software Requirements

● The client has requested that the team uses the ARX anonymizer library to
implement anonymization functionality.

● The client has required that resulting anonymization process has to be more efficient
than the previous and reduce the hours that are spent doing this manually.

● The client has required that the project is published as an open source project with an
MIT licence.

● The client has required that the system backend will be packaged as a docker image
so the service can be deployed to the NAIS/Kubernetes platforms.

● The client has required that the team develop a Python package to “wrap” the web
service, it will provide easy integration and interaction between the web service and
data scientist tools and processes.

● The client has requested that the Python package has to be designed for use in a
Jupyter notebook.

● The client has required that the system will utilize end to end encryption for data in
transit, to and from the web service backend.

3.4.1.2.2.2 Design Decisions

Design decisions made by the team in collaboration with the customer to achieve the stated
goal of the system.

● English will be the main language used for both the documentation and programming
to make it easier for the team to deliver on the open source requirement from the
client.

● The team has decided to utilize Java as its runtime environment for the backend
service. The ARX library that the client has requested to be used is packaged as a
Java JAR file. Using Java was a logical choice.

● The team has decided to use a service architecture to decouple the different logical
components of the project. A service architecture will also deliver on the clients wish
to be able to scale the system dynamically according to use.

77

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 79/219

● The team has decided to utilize Spring as its backend framework to deliver a web

service in accordance with the service architecture. Spring is the defacto standard for
Java web applications and has great libraries for development of secure, scalable
web applications.

3.4.1.3 User Stories
User stories are one of the primary development artifacts for Scrum project teams. A user
story is a very high-level definition of a requirement, containing just enough information so
that the developers can produce a reasonable estimate of the effort to implement it.

The team wrote the user stories at the beginning of the project. This document was written
with the expectation that it would change in the future, since the team decided on
implementing an agile workflow. The user stories has changed based on the feedback
received from the product owner.

Actor Story Priority

Data
Scientist

As a data-scientist, I would like to easily visualize the
anonymization metrics for anonymized datasets

Reasoning: Visualization is a powerful tool to get an
understanding of complex data.

High

Data
Scientist

As a data-scientist, I would like to analyze the anonymization
metrics (re-identification risks) of my dataset

Reasoning: Getting metrics of the anonymization level of a
dataset is necessary to judge how safe the dataset is to use in
production, and/or if the dataset should be anonymized further.

High

Data
Scientist

As a data scientist, I would like to have a single source where to
lookup the documentation for the PyAaaS package (AaaS
Python wrapper package).

Reasoning: To facilitate efficient use of the Python package it is
critical to make available up-to-date documentation of both the
package API and tutorials for common use cases.

Medium

Data
Scientist

As a data scientist, I would like to be able to configure the
Privacy Models to be used when anonymizing my dataset

High

Data
Scientist

As a data scientist, I would like to be able to configure the
Transformation Models to be used when anonymizing my
dataset.

High

78

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 80/219

Data
Scientist

As a data scientist, I would like to be able to use
K-Anonymization as a Privacy Model for my dataset.

High

Data
Scientist

As a data scientist, I would like to be able to set a global
transformation scheme for all record s in a column/field.

High

Data
Scientist

As a data scientist, I would like to be able to set a local
transformation scheme for a column/field . Meaning a unique
transformation scheme for each individual row or subset of rows
in a column/field.

Low

Data
Scientist

As a data scientist, I would like to be able to use a Value
Generalization hierarchy as a Transformation Model for a
column/field.

High

Data
Scientist

As a data scientist, I would like to be able to use random
sampling as a Transformation Model for a column/field

Medium

Data
Scientist

As a data scientist, I would like to be able to use attribute
suppression as a Transformation Model for a column/field

Medium

Data
Scientist

As a data scientist, I would like to use microaggregation as a
Transformation Model .

Medium

Data
Scientist

As a data scientist, I would like to use Top- and bottom-coding
as a Transformation Model.

Medium

Data
Scientist

As a data scientist, I would like to use Categorization as
Transform Model for a column/field.

Medium

Data
Scientist

As a data scientist, I would like to identify rows affected by
lowest risk in a dataset.

Low

Data
Scientist

As a data scientist, I would like to determine the Lowest
prosecutor re-identification risk.

Low

Data
Scientist

As a data scientist, I would like to determine highest prosecutor
re-identification risk.

High

Data
Scientist

As a data scientist, I would like to identify rows affected by
highest risk.

High

Data
Scientist

As a data scientist, I would like to determine average prosecutor
re-identification risk.

High

Data
Scientist

As a data scientist, I would like to determine fraction of unique
records.

High

79

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 81/219

Data
Scientist

As a data scientist, I would like to be able to use K-map as a
Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to us e Average risk as
a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Population
uniqueness as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Sample
uniqueness as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use δ-Disclosure
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use β-Likeness
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use δ-Presence
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Profitability
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Differential
privacy as a Privacy Model for my dataset.

Medium

Data
Scientist

As a data scientist, I would like to be able to use ℓ-Diversity as a
Privacy Model for my dataset

High

Data
Scientist

As a data scientist, I would like to be able to set presets for
anonymization e.g loss percentage, min/max risk of prosecution

Low

Data
Scientist

As a data scientist, I would like to be able to verify whether an
anonymized dataset has been anonymized from an original
dataset

Low

Actor Story Priority

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like to be able to deploy the service to a docker container
environment.

high

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like continuous information about the build status of the AaaS
web service source code

medium

Data As a data engineer supporting the AaaS service in NAV, I would medium

80

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 82/219

Engineer like a single source/location for documentation, for setup and
deployment of the AaaS service.

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like a single source/location for the AaaS projects JavaDoc

low

Data
Engineer

As a data engineer supporting the AaaS service in NAV,I would
like to have logging available from the AaaS service.

high

3.4.1.4 System Restriction
This section explains the system and client defined restriction. In this section the team
defines the limitations of the system to be developed.

3.4.1.4.1 Security
The client has requested that the system use end-to-end encryption between the backend
service and consumers of the service (Python package, Third-party applications). The team
has decided to use TLS/SSL provided by the Spring framework.

3.4.1.4.2 Data Storage/Cache
The developed system cannot store or implement caching due to the sensitive nature of the
data used.

3.4.1.4.3 Accessible API
Our API must follow RESTful guidelines and strive to provide endpoints that allow for
seamless interaction with the ARX library.

3.4.1.5 Additional Requirements for System Construction
Non-functional requirements defined by the development team in cooperation with the client.
These requirements are meant to improve the quality and maintainability of the solution.

3.4.1.5.1 Process Requirements

3.4.1.5.1.1 Continuous Integration/Continuous Delivery (CI/CD)

CI platform
The system uses Travis CI and Code Climate as Continuous Integration tools. Travis
ensures that the codes are tested, while code climate checks the code quality and test
coverage before being pushed to the repository. Along with Travis and Code Climate, the
team uses GitHub with merge rules to ensure that the master build stays stable.

Each new iteration of the master build is packaged into a jar file, which would be packaged
again into a Docker image. This way we will have different stable builds that can be deployed
easily as a Docker container.

81

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 83/219

Version Control System (VCS)
Travis CI along with GitHub Merge rules maintains the stability of each version before a
release.
Github Merge rules does not allow directly pushing to the master build, along with not
allowing to push to the repository unless all test class passes. Each time there is a new
implementation a new branch needs to be made. This new branch is then tested before
being pushed to the repository, which is then finally merged to the master build.
Travis CI instantiates a docker container that runs the build being pushed along with all the
test classes. If a build passes Travis will then allow the build to pushed.

Static Code Analysis
Code Climate is used to ensure the maintainability and test coverage of the codes written.
Travis generates a test report using Jacoco, which is then forwarded to Code Climate by
using a unique ID. Code Climate reads through the report and generates a grade for test
coverage of our system. Code Climate is directly link to the systems GitHub repository,
granting access to check the quality of the codes written. Based on the quality of the code a
grade will be generated for the maintainability of our system.

3.4.1.5.1.2 System Development Framework

The team is developing the system following the Scrum framework.

3.4.1.5.2 Technical Requirements

3.4.1.5.2.1 System Packaging

Backend Service
● Docker Image

Python Wrapper Package

● Python package wheel and source distribution

3.4.1.6 Additional Requirements for Documentation
Additional non-functional requirements defined by the team in cooperation with the client.
These requirements are meant to improve the quality of the documentation.

3.4.1.6.1 System Documentation
The system backend service and python package will be delivered with documentation for
the corresponding to the intended usage.

82

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 84/219

Backend Service Documentation

● Setup and deployment tutorial
● System Javadoc

Python Wrapper Package Documentation
● Installation
● Common usage tutorial
● Examples (notebooks)
● API docs

3.4.2 Stretch goals
The following stretch requirements are wishes from the customer that the development team
would try to achieve if there was time left after delivering on the main requirements.

● The system will be able to auto generate a hierarchy level based on the column
attribute type.

● Provide specific Transformation Model hierarchies for NAV specific use cases (eg.
Norwegian geographical hierarchies, Norwegian zip code hierarchies).

● Provide an alternative web frontend that provides a lower barrier to entry, and a more
user friendly interaction.

● Grafana dashboard for surveillance of the anonymization service.

As the main stretch goal, the product owner wished for a simplified way to access the ARX
functionality, with a low requisite to user competence. It was therefore decided to implement
an interactive React web application. By taking advantage of the flexible REST API 52

provided by the ARXaaS service, the team decided that this was easily feasible. The client
was to offer the possibility to both analyze and anonymize data, without the need to install
software on their local machine, and with a lower requisite to competence. To fulfill this
stretch goal, the team ended up creating the WebARXaaS product which is documented in
detail in chapter 5.5 WebARXaaS.

3.4.3 Delivery
On 26.04.19 the team did the handover of ARX as a service to NAV IT. The solution delivery
provided all the functionality initially asked for by the product owner as well as the project
stretch goal.

The delivered features where:

● ARXaaS REST web service
● PyARXaaS
● WebARXaas

52 React introduction - https://reactjs.org/docs/getting-started.html

83

https://reactjs.org/docs/getting-started.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 85/219

3.5 Conclusion process documentation
After many hours spent on this project the team is proud of the results. During this process
the team delivered new and improved functionality to the product owner as well as creating a
open source project anyone can use. The team is proud to deliver the solution that is beyond
the project specifications and stretch goals.

The team can reaffirm that the Scrum development framework is well suited to timeboxed
projects like this. Continuous integration and Continuous delivery showed themself as
incredibly helpful practices that helped elevate the resulting product. Development of CI/CD
pipeline for the different products likely saved the project hours of manual work and
debugging. Developing new features fully according to the feature slicing practice meant the
client could provide feedback contrously, again a very important practice the team members
will continue to use on other projects.

During the course of this project all teams members have learned new skills and
technologies that can be used and developed further during work in the years to come.
The team also learned a lot from the product owners feedback and advice. The teams is
looking forward to developing the solution further this summer.

84

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 86/219

4 Test documentation
The purpose of this chapter is to give the reader a detailed description of the testing
completed during the project. The document describes the purpose of the tests, tools used
for testing, and how the tests are implemented. This document is written with the expectation
that the reader has basic programming and testing knowledge, and has read the process
documentation.

4.1 Goal
The goal for these tests is to ensure that the service and the clients work according to the
clients requirements. The test should also catch any regressions in the products. This is also
to ensure that in an event that a feature fails, the right error message is returned with a
detailed explanation of what went wrong and, if applicable, how to correct the error.

4.2 Tools
These are the tools the team used for testing:

● Postman
○ The team used postman to craft network requests and send it towards the

service end-points, in order to quickly test the service.
● Travis

○ The team used travis to automate the continuous delivery pipeline. Each new
branch pushed to the repository is tested in a virtual environment and has to
pass before being allowed to be merged in to the master branch.

● Code Climate
○ Code climate was used as a static code analyser that showed test coverage

as well the maintainability the code.
● Snyk

○ Snyk is used to ensure that the dependencies used in the project does not
have any vulnerabilities

● JUnit
○ Used for unit testing for the service.

● Spring boot starter test
○ Used to test our service web environment. Edge case testing to ensure that

the correct error messages shows and for the integration testing.
● Unittest(Python)

○ Module for making unit test for python libraries
● Pytest

○ Used in Travis to run the unittest for Python and retrieve the generated code
coverage from Coverage.py

○ Makes it easy to write small tests, yet scales to support complex functional
testing for applications and libraries.

85

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 87/219

● Coverage.py

○ Python library used to measure test coverage of Python programs.
● Locust

○ Locust is an easy-to-use, distributed, user load testing tool. It is intended for
load-testing web sites (or other systems) and figuring out how many
concurrent users a system can handle.

4.3 Planning
From the start of the project, the team used unit tests to explore the functionalities available
in the ARX libraries.This ensured a good understanding of the feature and made it easier to
integrate them in the service.

During development of the solution the project team decided to use test driven development
on both the service and client products. The goal was to ensure good test coverage and test
quality through the project. The test coverage was enforced by test coverage tools such as
Code Climate, the plan was to unit test each new method and make it pass, before moving
on with an integration test and thereafter system testing of the end-points. The assumption
being that having a stable service endpoint will make it possible to work on the client-side in
parallel. The project team decided on a test plan to ensure a stable build is always produced
before merging with the master branch in the version control host. The project team decided
on which test methods to use, test method naming, version control host merge rules and
tools to use to enforce the merge rules.

4.4 Execution
Its is important to ensure that a stable build is produced at the end of each Sprint. Therefore
testing was continuously done throughout the project. For each new feature implemented, a
unit test must follow before being allowed to be merged to the master branch. Integration
testing is done after all features in a sprint is implemented. Finally system testing and edge
case testing was done to ensure that the service works properly and in an event of an error,
show a detailed explanation of what occurred as well as make sure the correct error is
shown.

86

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 88/219

Figure 25 - Checking the branch before being approved to merge

Figure 26 - All checks passed

87

https://github.com/oslomet-arx-as-a-service/Report/blob/master/test-documentation/img/mergeRulesApprove.png

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 89/219

4.4.1 Travis

For every push to Github a travis job is started, in this job a virtual machine will run the
program and the tests. Each test must pass for travis to give a passing grade, this passing
grade is used to restrict merging of unstable builds to the version control host.

Figure 27 - Failed Travis build

Figure 28 - Passed Travis build

A set of scripts has been written to instruct travis on what to do upon a passing job. One of
these scripts is running Code Climates test reporter. The test reporter publishes the test
coverage report generated to Code Climate.

Figure 29 - Travis script running Code Climate test reporter

88

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 90/219

For ARXaaS, Jacoco Maven plugin was used to generate a test coverage report. Jacoco has
settings that tells it which classes to ignore when creating the test coverage report. These
classes are ignored because they are not meant to be tested.

Figure 30 - Jacoco include/exclude configuration

4.4.2 Static code analysis

The project has utilized Code Climate as its primary static code analysis tool in the CI
pipeline. Code Climate jobs were invoked by every push to the Version Control System,
triggering a scan of the code and generation of a detailed report. Maintainability and test
coverage is graded based on cyclomatic complexity, cognitive complexity, duplication, and
other structural issues. This subchapter covers explanations of the mentioned strategies that
Code Climate uses for its’ static code analysis. See Code Climate’s documentation for 53

more on the setup and the use cases of the service.

Figure 31 - Code Climate dashboard

53 CodeClimate documentation - https://docs.codeclimate.com/docs/maintainability

89

https://docs.codeclimate.com/docs/maintainability

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 91/219

Cyclomatic complexity 54

Metric for the complexity of a program based on the quantity of independent paths available
during runtime of the program’s source code. Cyclomatic complexity is primarily dependent
on the amount of if-else statements and loops. The amount of these statements directly
affects the code’s testability, following the logic that too many traversable paths is equivalent
to less testable code. Code Climate processes the code with an algorithm to generate a
control-flow graph based on the sheer amount of traversable paths. Based on the 55

control-flow graph Code Climate can generate a score on cyclomatic complexity.

Cognitive complexity 56

Metric for code complexity from the perspective of readability. Code Climate interprets code
flow, intuitive syntax and code structure through an algorithm to analyze the
understandability and readability of the code.

Duplication 57

Duplication is quite simple; Code Climate looks for duplicate code blocks. With the help of a
simple algorithm to point out duplication, Code Climate can provide helpful suggestions of
relatively simple ways to improve the code quality, for instance suggesting to move duplicate
code to a public function.

4.4.3 Vulnerability analysis

To mitigate the risk of introducing vulnerabilities or malicious code through product
dependencies, vulnerability analysis is employed on all project products. Vulnerability
analysis is the practice of scanning through a codebase dependency graph and check the
dependencies against a database of known vulnerabilities.

Snyk is a open Source security platform , used to search the dependencies used in
ARXaaS, PyARXaaS and WebARXaaS for known vulnerabilities. A report is sent to the
project team when a vulnerability is detected. Vulnerabilities can usually be fixed by updating
it to the newer version. In a case where an update doesn't fix the vulnerability, the project
team will look at the dependency and how it affects the project. Depending on the extent of
the effect, the team will either leave it be or completely replace the dependency.

54 Cyclomatic complexity - https://en.wikipedia.org/wiki/Cyclomatic_complexity
55 control-flow graph - https://en.wikipedia.org/wiki/Control-flow_graph
56 Cognitive complexity - https://docs.codeclimate.com/docs/cognitive-complexity
57 Duplication - https://docs.codeclimate.com/docs/duplication-concept

90

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Control-flow_graph
https://docs.codeclimate.com/docs/cognitive-complexity
https://docs.codeclimate.com/docs/duplication-concept

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 92/219

Figure 32 - Snyk dashboard

4.5 Test phases

Test Design
Test design is a process that describes “how” testing should be done. It includes processes
for the identifying test cases by enumerating steps of the defined test conditions. The testing
techniques defined in test strategy or plan is used for enumerating the steps.

Unit testing
Unit tests are tests that test individual units or components in the system in isolation. A unit
could be a class or a even a stand alone function.

Definition by ISTQB 58

Component testing: The testing of individual software components.

Integration testing
Integration tests that tests the level where individual units of the system are combined. The
purpose is to expose errors in the interactions between system units.

Definition by ISTQB
integration testing: Testing performed to expose defects in the interfaces and in the
interactions between integrated components or systems.

System testing
System tests are tests that verify that the whole system works to specification.

58 ISTQB - https://www.istqb.org/

91

https://www.istqb.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 93/219

Definition by ISTQB system testing: The process of testing an integrated system to verify that
it meets specified requirements.

Acceptance testing
Acceptance tests are test that verify the systems compliance with business requirements.
These are the tests that should verify that the user of the system is receiving the requested
value.

Definition by ISTQB
acceptance testing: Formal testing with respect to user needs, requirements, and business
processes conducted to determine whether or not a system satisfies the acceptance criteria
and to enable the user, customers or other authorized entity to determine whether or not to
accept the system.

Performance testing
Performance test are tests that intend to determine how a system performs. Important
variables that are measured are:

● responsiveness
● stability

The team has primarily utilized these performance testing types:

● Load testing A type of performance test where the systems behaviors under expected
load is tested.

● Stress testing A type of performance test where the system behavior under extreme
load is tested

 Due to the user requirements and expected usage of the system spike and
endurance testing was not completed.

○ Endurance testing The ARXaaS system does not use a database that could
become overloaded or use other external services that could degrade over
time.

○ Spike testing The ARXaaS system is deployed in a container orchestration
service (NAIS) where spikes are managed by the service.

92

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 94/219

4.6 ARXaaS
The service has been unit tested, and integration tested using JUnit 4 and 5. System testing
was done by using Spring boot starter test.

4.6.1 Unit testing
Each method that integrates a feature from the ARX library is unit tested. Along with these
integrated methods, all the models and the most important components of the service has
also been unit tested.

@Test
void create_returnData_is_correct (){
 ARXDataFactory dataFactory = new ARXDataFactory();
 Data data = dataFactory.create(testPayload);
 DataHandle handle = data.getHandle();
 List<String[]> actual = new ArrayList<>();
 handle.iterator().forEachRemaining(actual::add);

 String[][] rawData = {{ "age" , "gender" , "zipcode" },
 { "34" , "male" , "81667" },
 { "35" , "female" , "81668" },
 { "36" , "male" , "81669" },
 { "37" , "female" , "81670" },
 { "38" , "male" , "81671" },
 { "39" , "female" , "81672" },
 { "40" , "male" , "81673" },
 { "41" , "female" , "81674" },
 { "42" , "male" , "81675" },
 { "43" , "female" , "81676" },
 { "44" , "male" , "81677" }};
 List<String[]> expected = List.of(rawData);
 for (int x = 0 ; x< 12 ;x++) {
 Assertions.assertArrayEquals(expected.get(x), actual.get(x));
 }
}

Unit testing is done by using a test data and sending it in as a parameter. The resulting data
is then checked by comparing it to an expected result.

93

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 95/219

Figure 33 - All unit test passed

4.6.2 Integration testing
Integration testing is done on all the methods that uses the factory classes, and all the
models used by the factory classes. A test object is generated and used as a parameter for
integration testing. The resulting object from the integration tests is then checked if it
managed to correctly created the response model object.

@Test
void anonymize_should_return_with_list_of_attribute (){
 AnonymizeResult result = testAnonymizer.anonymize(testRequestPayload);
 Assertions.assertNotNull(result.getAttributes());
}

@Test
void anonymize_should_return_with_list_of_data (){
 AnonymizeResult result = testAnonymizer.anonymize(testRequestPayload);
 Assertions.assertNotNull(result.getData());
}

The integration is about making sure that the different methods from different classes can
work together and create the correct data object.

94

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 96/219

Figure 34 - All integration test passed

4.6.3 System testing
System testing is done on the three main endpoints in the service. Spring boot starter test is
used to start the service. A request object based on generated test data is created. The
service endpoint is called with the request object as a parameter. The response object is
returned for the service, and is checked if it is correctly created and if the values inside the
object are correct.

@Test
void getPayloadAnalyze_system_test (){
 Request testRequestPayload = GenerateIntegrationTestData.zipcodeRequestPayload();
 ResponseEntity<RiskProfile> responseEntity =
restTemplate.postForEntity("/api/analyze" , testRequestPayload, RiskProfile.class);

 assertNotNull(responseEntity);
 assertSame(HttpStatus.OK , responseEntity.getStatusCode());
 RiskProfile actual = Objects.requireNonNull(responseEntity.getBody());
 RiskProfile expected = GenerateIntegrationTestData.zipcodeAnalyzation();
 Assertions.assertEquals(expected,actual);
}

95

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 97/219

Edge case testing was also done by generating request object with incorrect or invalid data.
The end-points are then expected to throw an error exception, this exception is then
compared to with an expected execution as wells making sure that end-points sends a
detailed description of the error message and how to correct the error.

@Test
void getPayloadAnalyze_wrong_attribute_format (){
 Request wrongAttributeFormat =
GenerateEdgeCaseData.zipcodeRequestPayload_wrong_attribute_format();
 ResponseEntity<IllegalArgumentException> responseEntity =
restTemplate.postForEntity("/api/analyze" , wrongAttributeFormat,
IllegalArgumentException.class);

 assertNotNull(responseEntity);
 assertSame(HttpStatus.BAD_REQUEST, responseEntity.getStatusCode());
 var resultData = responseEntity.getBody();
 assertNotNull(resultData);
 assertNotNull(resultData.getMessage());
}

Figure 35 - All system test passed

96

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 98/219

4.7 PyARXaaS
PyARXaaS tests are located under the test/ directory in the project root . The tests are all 59

written using the unittest testing framework included in the Python standard library. The 60

tests are organized in a directory hierarchy mirroring the package directory hierarchy. The
purpose of the tests are to verify that the package is behaving as intended and as a measure
against future regressions.

tests/
├── __init__.py
└── pyarxaas/
 ├── data_generator.py
 ├── hierarchy/
 │ ├── __init__.py
 │ ├── test_IntervalHierarchyBuilder.py
 │ ├── test_Interval.py
 │ ├── test_OrderHierarchyBuilder.py
 │ └── test_ReductionHierarchyBuilder.py
 ├── __init__.py
 ├── models/
 │ ├── __init__.py
 │ ├── test_AnonymizationMetrics.py
 │ ├── test_AnonymizationResult.py
 │ ├── test_AnonymizeResult.py
 │ ├── test_Attribute.py
 │ ├── test_Data.py
 │ ├── test_Dataset.py
 │ ├── test_privacy_models_ldiversity.py
 │ ├── test_privacy_models_Tcloseness.py
 │ └── test_RiskProfile.py
 ├── test_AaaSConnector.py
 ├── test_ARXaaS.py
 ├── test_converters.py
 ├── test_data/
 │ ├── analyze_response_test_data.json
 │ └── anonymize_response_test_data.json
 ├── test_request_builder.py
 └── test_state_printer.py

Tests where ran for every new branch committed to the Github repository. This was intended
to ensure that only stable code was merged into master and released to users. PyARXaaS
development followed TDD practices and the test coverage is at 89% as of writing this
rapport. See the chapter on 5.4.3 Release Pipeline for more on the PyARXaaS CI/CD
pipeline.

4.7.1 Unit testing

59 PyARXaaS test directory - https://github.com/oslomet-arx-as-a-service/PyARXaaS/tree/master/tests
60 Python unittest - https://docs.python.org/3/library/unittest.html

97

https://github.com/oslomet-arx-as-a-service/PyARXaaS/tree/master/tests
https://docs.python.org/3/library/unittest.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 99/219

For a package like PyARXaaS unit tests are key to ensure the users are provided a stable
and well put together product. It’s not enough or in some cases possible to fall back to
integration test that test the package components together. User of the package have the
possibility to pick and choose parts from the package in new and unanticipated combination.
To ensure the package supports innovative use the individual parts must have good isolated
unit tests.

Extract from the unit test for the Dataset class 61

class DatasetTest (unittest.TestCase) :

 def setUp (self) :
 self.test_data = [['id' , 'name'],
 ['0' , 'Viktor'],
 ['1' , 'Jerry']]
 self.test_attribute_type_mapping = { 'id' : AttributeType.IDENTIFYING,
 'name' : AttributeType.QUASIIDENTIFYING}

 def test_init (self) :
 Dataset(self.test_data, self.test_attribute_type_mapping)

 def test_equality (self) :
 dataset_1 = data_generator.id_name_dataset()
 dataset_2 = data_generator.id_name_dataset()
 self.assertEqual(dataset_1, dataset_2)
 self.assertIsNot(dataset_1, dataset_2)
 dataset_2._set_attribute_type("id" , AttributeType.QUASIIDENTIFYING)
 self.assertNotEqual(dataset_1, dataset_2)

 def test_hash (self) :
 dataset_1 = data_generator.id_name_dataset()
 dataset_2 = data_generator.id_name_dataset()
 test_set = {dataset_1, dataset_2}
 self.assertEqual(1 , len(test_set))

61 Dataset unit tests - ttps://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/tests/pyarxaas/models/test_Dataset.py

98

https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/tests/pyarxaas/models/test_Dataset.py

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 100/219

4.7.2 Integration testing
PyARXaaS contains many objects that have a collaborative relationship. Integration tests
have been written to ensure the objects work together as intended.

Example from test_ARXaaS.py 62

The tests verifies that the call to the method results in a return object. It does not verify that
the content of the result object is correct. This is handled by other system tests.

 def test_analyze (self) :
 aaas = ARXaaS('http://localhost' , connector=MockAaasConnector)
 self.assertIsNotNone(aaas.risk_profile(self.test_dataset))

 def test_anaonymize (self) :
 aaas = ARXaaS('http://localhost' , connector=MockAaasConnector)
 self.assertIsNotNone(aaas.anonymize(self.test_dataset,
privacy_models=[KAnonymity(4)]))

4.7.3 System testing
System testing is mainly applicable to the ARXaaS class. This is the class that brings
together and uses several different parts of the package. The ARXaaS class is responsible
for making calls to the ARXaaS service. Tests should avoid dependency on outside elements
as far as it is possible. The team has handled this in the ARXaaS test by mocking the
ARXaaSConnector class in the ARXaaS system tests.

ARXaaSConnector Mock

class MockAaasConnector (ARXaaSConnector) :

 def anonymize_data (self, payload: Body) :
 return AnonymzationResponseStub()

 def risk_profile (self, payload: Body) :
 return AnalyzationResponseStub()

 def hierarchy (self, payload: Body) :
 return HierarchyResponseStub()

 def root (self) :
 return RootResponseStub()

System test examples from ARXaaS class test The test verifies that the result have the
correct attribute type.

62 test_ARXaaS.py - ttps://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/tests/pyarxaas/test_ARXaaS.py

99

https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/tests/pyarxaas/test_ARXaaS.py

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 101/219

def test_anonymize__dataset_attributes_are_correct (self) :
 aaas = ARXaaS('http://localhost' , connector=MockAaasConnector)
 anonymize_result = aaas.anonymize(self.test_dataset, [KAnonymity(4)])
 self.assertEqual(AttributeType.IDENTIFYING,
AttributeType(anonymize_result.dataset._attributes[0].type))

4.8 WebARXaaS
WebARXaaS was a stretch goal and the development process of the web application started
late into the project. As a result of the limited time WebARXaaS lacks unit and component
based testing. Although as most of the business logic is done on the backend by ARXaaS,
most of the data operations are already being tested during the tests of ARXaaS. The fact
that WebARXaaS mostly only handles the uploading, downloading, and visualization of data,
makes it less prone for failure than ARXaaS. But nevertheless it is important that the team
does their best to ensure that all the inputs gets supplied in the right format, and that the
output is visualized correctly.

4.8.1 Data integrity
The primary way of testing data integrity in WebARXaaS is by manually checking if all data
values are in place and are containing valid values.

Before the testing could start the team made sure that they had downloaded the ARX
anonymization tool on their local machine, and ensure they had access to a dataset
containing personal identifying tabular data or microdata . To start the team first did a 63

anonymization with the arx tool on the data they had supplied, making sure that they applied
all four different attribute types. Then the team read the output metrics from both the
analyzation and anonymization process and stored it through screenshots for it to be
compared with WebARXaaS.

For testing WebARXaaS the team started up one instance each of both WebARXaaS and
ARXaaS locally, they then used the WebARXaaS web interface and made sure to upload the
exact same data through the web interface as they did in the arx application.

Anonymizing the data both in the ARX application and WebARXaaS at the same settings,
then comparing the Re-identification risks. If every parameter have been assigned in the
same way, all the data fields should hold identical values. If any of the data fields show
unexpected values it could be an indicator of an error in either WebARXaaS, or the ARXaaS
backend. It is especially important that the Highest prosecutor risk value matches both
places as this value is usually used to determine wherever the dataset is sufficiently
anonymous or not.

63 Microdata - https://nsd.no/macrodataguide/macro_data.html

100

https://nsd.no/macrodataguide/macro_data.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 102/219

Figure 36 - Risk profile form WebARXaaS

Figure 37 - Risk profile form th ARX GUI

101

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 103/219

4.8.2 API Testing

In order to ensure that the metadata applied through the user interface gets sent onward to
the ARXaaS service, the team inspected the json params from the outgoing request. By
inspecting the json parameters they confirmed that all the attributes had been assigned
correct attribute Type model. The team could also see each of the privacy models, and
ensure that all the meta data for each of the models are in place and set correctly. This also
confirmed that each of the rows in the dataset had been loaded. SuppressionLimit was an
optional parameter, so a null value was acceptable.

Figure 38 - Suppression limit parameter

4.9 Performance testing
The team completed different types of performance testing of ARXaaS in isolation with direct
calls to the HTTP endpoints and with use of the PyARXaaS package. The Key performance
indicator (KPI) for the performance tests are response time. The use case for the solution is
not hundreds of calls a second. The much more likely use case is a single request with a
large dataset. Scalability issues related to request per second is mitigated by the fact that
ARXaaS can be scaled horizontally. The team worked from the assumption of a maximum of
a single call per second to ARXaaS. The service was therefore tested with large but few
requests. The goal of the different performance test where to discover defects or stability
issues when the solution was put under normal load (load test) and extreme stress (stress
test)

102

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 104/219

4.9.1 Load test
The load testing was completed using the Locust framework. Locust provides a Python API
for constructing customized load testing jobs. The analyze and anonymize endpoints were
tested in isolation. The locust tests where ran against the ARXaaS service running in NAIS
pre production environment. The test simulates users making calls to the ARXaaS service
endpoints. The test was for each test case configured to run for 1 minute with 1 request per
second.

The test data can be found at this url:
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/du
mmy-dataset-260219.csv

NAIS configuration file for the test:
replicas:
 min: 1
 max: 1

resources:
 limits:
 cpu: 1500m
 memory: 4800Mi

 requests:
 cpu: 200m
 memory: 512Mi

Locust CLI command

python -m locust.main -f scripts/analyze_locust_test.py --host http://localhost:8080
--no-web -c 2 -r 1 --run-time 1m --csv=example -t30s

Locust analyze test script
class UserBehavior (TaskSet) :

 @task(1)
 def analyze (self) :
 self.client.post("/api/anonymize" , json=request, verify= False)

class WebsiteUser (HttpLocust) :
 task_set = UserBehavior
 min_wait = 500
 max_wait = 1000

103

https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/dummy-dataset-260219.csv
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/dummy-dataset-260219.csv

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 105/219

The data from the load test can be found in the Github repository . Each test is ran with a 64

dataset with the same dataset but copied n times to achieve a given size.

Result of analyze endpoint test with 100 000 rows
Method Name #

request
s

failures

Median
respons
e time

Average
respons
e time

Min
respons
e time

Max
respons
e time

Average
Content
Size

Reques
ts/s

POST /api/anal
yze

25 0 1300 1400 729 2772 3312 0.43

None Total 25 0 1300 1400 729 2772 3312 0.43

Result of analyze endpoint test with 1.2 million rows
Method Name #

request
s

failures

Median
respons
e time

Average
respons
e time

Min
respons
e time

Max
respons
e time

Average
Content
Size

Reques
ts/s

POST /api/anal
yze

5 0 10000 9495 8290 10256 3589 0.10

None Total 5 0 10000 9495 8290 10256 3589 0.10

The client has not put forward any requirements regarding response time. During Sprint
review the load test result was presented and the feedback form the product owner was that
the result was acceptable but that the team should monitor for changes.

The test result datas can be found on the github page:
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/tree/master/tests/analyze_
stress_test/data

64 Analyze load test - https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/tree/master/tests/analyze_stress_test

104

https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/tree/master/tests/analyze_stress_test/data
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/tree/master/tests/analyze_stress_test/data
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/tree/master/tests/analyze_stress_test

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 106/219

4.9.2 Stress test
Stress testing is testing of the upper limits of a system. It puts the system under a extreme
load the system was not designed or expected to handle. It is intended to reveal system
behaviour outside the normal scope of operations and how it recovers from extreme load.

Windowing Stress test

Tool used: Jupyter notebooks

Link to test notebook:
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/window-datas
et-load-testing.ipynb

Stress test with increased rows and columns conducted 12.04.19. The test was completed at
NAV IT NAIS test cluster. The NAIS team was informed of the test and gave the team a “OK”
before the test was conducted. The purpose of the test was to find the limits of the ARXaaS
system capabilities and when found, where the system would break. A secondary goal was
to measure the response time for increasing size of datasets.

NAIS configuration file for the test:
replicas:
min: 1
max: 1

resources:
limits:

 cpu: 1500m
 memory: 4800Mi

requests:

 cpu: 200m
 memory: 512Mi

The test used randomly generated datasets consisting of the fields id, name, age, gender,
location. Link to the script for generating test data:
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/te
st_data.py

105

https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/window-dataset-load-testing.ipynb
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/window-dataset-load-testing.ipynb
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/test_data.py
https://github.com/oslomet-arx-as-a-service/ARXaaS-load-testing/blob/master/scripts/data/test_data.py

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 107/219

The generated datasets looked like this example:
 name age gender location name age gender location

0 vtvkzewq
gt

21 male Miami iceglyzye
u

80 female London

1 ucfbturv
pq

67 male Oslo nxctvwq
hoj

79 male Bergen

2 ldsrfybaa
i

78 female London zvnnpyw
esx

22 female London

3 dytjgeyz
dc

81 male Tokyo xugsuyqr
me

16 female Moscow

4 ptjkbfpri
a

40 male Bergen epvqcye
dli

65 male Miami

5 kpmgvyy
ceg

95 female Miami nheehiuy
af

99 female Bergen

6 yjqhsdsg
qm

78 female Tokyo szuohqx
myv

72 female Tokyo

7 qykoujzc
sv

57 male Bergen cywhpvi
qrr

23 female Tokyo

8 bttfvkssn
z

84 female Bejing xwosuql
pys

82 male Tokyo

9 eoiqvrwit
g

22 male Miami xihjismxq
p

11 female Bergen

Test dataset shape:
[(50000, 1),
 (100000, 2),
 (150000, 2),
 (200000, 3),
 (250000, 3),
 (300000, 4),
 (350000, 4),
 (400000, 5),
 (450000, 5),
 (500000, 6),
 (550000, 6),
 (600000, 7),
 (650000, 7),
 (700000, 8),
 (750000, 8),
 (800000, 9),
 (850000, 9),
 (900000, 10),
 (950000, 10),
 (1000000, 11)]

The largest dataset consisted off 1 million rows and 11 columns.

106

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 108/219

The test script
The test script uses the PyARXaaS to connect to ARXaaS. It uses the Python standard
library module; timeit, to track the response time for the calls to the ARXaaS service.

 def dataset_window_analyze_stress_test (shapes: list, connector) :
 global dataset
 global con
 con = connector

 for shape in shapes:
 result = {}
 dataset = test_window_dataset(shape[0], shape[1])
 size = sys.getsizeof(dataset.to_dataframe().to_csv())
 elapsed_time = timeit.timeit(f"analyze(dataset)" ,
 globals=globals(),
 number= 1)
 result[str(shape[0])+ "x" +str(shape[1])] = (elapsed_time, size)
 yield result

The Result
The result visualized as line graphs in figure 39 and figure 40 below shows a linear increase
in response time from the service as the dataset size in the request increases. This is good
news for the service as it indicates that the service can handle bigger requests with more
machine power. If the request time increase would be exponential or worse adding more
machine power would not scale with increased dataset sizes.

107

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 109/219

Figure 39 - Response time for a dataset of given rows x columns during ARXaaS stress test

Figure 40 - of response time for a dataset of size in MiB during ARXaaS stress test

108

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 110/219

4.10 Acceptance testing

Acceptance testing was done by hosting a workshop at NAV IT. In this workshop the product
owner, a data engineer, a data analyst and two data scientist from NAV IT was present. The
product owner and the participants followed a step by step guide on how to start and use our
solution.

The main focus of this workshop was to show both the anonymization and analyzation
features, as well as show the different data the user receives from the process. Explore the
different error messages was also tested to see if they were detailed enough on explaining
the type of error and the solution to fixing the error. Feedback was collect on how to improve
the service, as well as possible new features to be implemented.

Acceptance test report

Testers Robindra, Gøran, Eirk, Paul, John Vegard

Facilitators Sondre, Jeremiah, Andre, Julian

Test goal Gather feedback on the usability and API ergonomics of the
PyARXaaS package from NAV IT data scientist and analysts. The
tester where to use the user guide to complete the work so a side
effect of the test was gathering feedback on the quality of the user
guide. And by transitive the ARXaaS service.

Test method Test participants where given a test dataset to analyze
re-identification risk on and then anonymize to k=4 using provided
generalization hierarchies. Test data and hierarchies where supplied
as csv files.

Time/place Sannergata 2(NAV IT offices), 12 April

Result Several defects were discovered in the user guides. Mostly related to
the documentation being out of synch with the latest PyARXaaS
version. Some confusion regarding the method naming and how
similar named methods differed. But after the initial hurdles where
overcome the test participants all managed to complete a successful
risk analysis and anonymization using the solution. Features more
related to a legal framework for anonymization was brought up, but
such a solution not a part of the scope of this project. The testers
consensus was that the solution delivered high value to the
analyzation problems they are faced with.

109

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 111/219

4.11 Conclusion test documentation
By following a continuous integration workflow by continually testing each new feature on the
service- and client-side, ensured that the new branch is stable before merging with the
master branch in the version control host repository. The test provided a steady flow of
feedback to the development team. Utilizing test driven development process ensured a the
project was continually tested.

Test driven development made it easier to see if the new features were unstable or had
problems long before it could enter the master branch. Conducting a workshop with the client
also meant the project team received important feedback from both the product owner and
other stakeholders on the solution.

Performance tests ensured that the solution could withstand normal and even extreme
stress. The performance and edge tests meant the team could be confident that the solution
would perform when faced with real user action.

110

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 112/219

5 Product documentation
The purpose of this document is to give the reader a technical view of how the system has
been build and the functionalities available in both the service and clients. This document
also shows how the client works with the service.

This document is written with the expectation of being used for working with operations,
maintenance or future development, it is therefore expected that the reader has
programming knowledge. For a better understanding of this document we recommend
reading the presentation documentation first.

5.1 Introduction
The solution to the clients problem that the team developed consists of three different
products. Acting as the service, the team created ARX as a service , or in short ARXaaS,
which provides all the business logic using the ARX library. ARXaaS’s design allows it to be
packaged and deployed to a container orchestration platform and being interacted with,
through a REST API. To fulfill our customers needs, the team created two clients, each
designed to provide the same functionality, but for two very different groups of users.

Our main client PyARXaaS is a python package designed specifically with data scientists as
the main user group in mind, which makes it possible to utilize ARX functionality from any
python program or notebook. As well as integrating well in automated data pipelines.

The secondary client is WebARXaaS which is designed to be the more user-friendly
alternative. The WebARXaaS provides the ARX functionality through a dynamic single-page
web application. Meanwhile demanding no installation of software, or programming
experience to use. The development of WebARXaaS was started later in the process than
PyARXaaS as the need for it didn’t become clear, until towards the end of the project, and
even then was implemented as a stretch goal.

111

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 113/219

5.2 ARXaaS

5.2.1 Short presentation

ARXaaS re-packages the core ARX libraries as a data anonymization service.

Figure 41 - ARXaaS tools and libraries diagram

A simplified rundown of the service’s functionality, would be initiated upon receiving a POST
HTTP request, to either the /analyze , /anonymize or /hierarchy endpoint. The request is
sent to the /anonymize endpoint. This request would consist of a dataset to be anonymized
and the anonymization parameters. The service's objective would be to return a transformed
dataset with the specified level of anonymity. The service will have disposed of as little
information as possible in order to reach the specified level, and the dataset’s
re-identification risks will have been reduced as a result.

The team’s objective for ARXaaS has been to create a service capable of handling the
described workload, and to offer it as a “Dockerizable”, easily deployable and scalable
service on platforms like Kubernetes.

112

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 114/219

5.2.2 Release Pipeline

ARXaaS utilizes a rich CI/CD pipeline to verify changes to the codebase, and to manage
releases and deployments of new versions. See Chapter 3.2.1.2 Continuous integration and
Continuous delivery, for a more detailed description on the reasoning and overview of the
CI/CD pipelines developed during the project.

Figure 42 - Diagram showing the ARXaaS CI/CD pipeline

Configuration for each of the steps below can be seen in the .travis file in the ARXaaS
Github repository , with the exception of the NAIS platform. 65

API Documentation

The ARXaaS API documentation is generated using the Spring REST docs library. Spring
REST docs is a Maven plugin that uses tests to generate and validate documentation
regarding a REST API. The benefit of Spring REST Docs over other API documentation tools
like Swagger , is that the documentation is verified to be correct by a test. ARXaaS uses 66

JUnit and Spring MockMvc to create system tests that test the API with test data and
generate documentation from the tests. The generated documentation is published to Github
pages to host the documentation. 67

65 ARXaaS travis file - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/.travis.yml
66 Swagger homepage https://swagger.io/
67 Github pages - https://pages.github.com/

113

https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/.travis.yml
https://swagger.io/
https://pages.github.com/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 115/219

Figure 43 - Screengrab from ARXaaS API documentation 68

Maven Central

Maven Central is an online repository for sharing Java libraries. With the help of the CI/CD 69

pipeline, the team can effortlessly upload every new version of the project to the Maven
Central Repository. All projects uploaded to Maven Central are available world-wide as JARs
and as Maven Dependencies . As the Maven Central Repository is very accessible, it can 70

be utilized to provide continuous world wide availability of the project’s latest version, which
the team used for the benefit of the CI/CD pipeline.

As a bonus, all libraries uploaded to Maven Central Repository automatically gain their own
Javadoc web page hosted by javadoc.io . Obviously, ARXaaS has its own Javadoc too . 71 72

68 ARXaaS API docs page - https://oslomet-arx-as-a-service.github.io/ARXaaS/
69 Maven Central Repository - https://search.maven.org/
70 Maven Dependency - https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
71 Javadoc.io homepage - https://javadoc.io/
72 ARXaaS Javadoc - https://javadoc.io/doc/no.oslomet/arxaas/0.3.3-RELEASE

114

https://oslomet-arx-as-a-service.github.io/ARXaaS/
https://search.maven.org/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://javadoc.io/
https://javadoc.io/doc/no.oslomet/arxaas/0.3.3-RELEASE

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 116/219

Figure 44 - Screengrab of ARXaaS on Maven Central 73

Docker Hub

Every new release of ARXaaS is packaged as a container and released on Docker Hub . 74

Docker Hub is the hosting and distribution platform for docker containers. You can find the
ARXaaS Docker Hub page here: https://hub.docker.com/r/arxaas/aaas

NAIS

The deployment to NAIS is handled by NAV IT AI-labs internal Jenkins server. Jenkins is a
CI/CD automation tool, similar to Travis CI. NAIS have strict protections for its platform and
the setup of the Jenkins server will not be described further in this report, ARXaaS is cloned
from Github and re-compiled on the Jenkins server. After verifying the build, ARXaaS is
deployed with the resources specified in the .nais file located in the root directory in the
ARXaaS project.

5.2.3 Technologies

This section will describe the main technologies, libraries and dependencies used by the ARXaaS
application. Some have been omitted for brevity see the ARXaaS pom.xml file for the full list of 75

dependencies and plugins.

5.2.3.1 Runtime
ARXaaS is developed with OpenJDK 11. OpenJDK 11 was decided on after consulting with
NAV IT’s application development teams. OpenJDK is a open source implementation of the
Java language and runtime. The main reason for using OpenJDK is that Oracle, the main
developers and owners of the Java programming language, have recently changed their
licensing . The new license is more restrictive and have implications for how ARXaaS could 76

73 ARXaaS on Maven Central - https://search.maven.org/artifact/no.oslomet/arxaas/0.3.3-RELEASE/jar
74 Docker Hub - https://hub.docker.com/
75 ARXaaS pom file - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/pom.xml
76 Oracle Java SE Licensing FAQ - https://www.oracle.com/technetwork/java/javase/overview/oracle-jdk-faqs.html

115

https://hub.docker.com/r/arxaas/aaas
https://search.maven.org/artifact/no.oslomet/arxaas/0.3.3-RELEASE/jar
https://hub.docker.com/
https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/pom.xml
https://www.oracle.com/technetwork/java/javase/overview/oracle-jdk-faqs.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 117/219

be run in production. The team therefore decided to use OpenJDK and its runtime, since it
can be used in production for commercial use without paying a license fee. OpenJDK 11 is
the latest Java Long Term Support (LTS) version and was is therefore a good balance of new
features and longtime support.

5.2.3.2 Building and packaging

5.2.3.2.1 Apache Maven
Apache Maven is a complete software project tool for Java or JVM based software projects.
From Apache Maven’s homepage : 77

Maven’s primary goal is to allow a developer to comprehend the complete state of a
development effort in the shortest period of time. In order to attain this goal, there are several
areas of concern that Maven attempts to deal with:

Making the build process easy

● Providing a uniform build system
● Providing quality project information
● Providing guidelines for best practices development
● Allowing transparent migration to new features

ARXaaS uses Maven to run the test suite, generate the REST API documentation, generate
the Javadoc, package the product artifacts, publish ARXaaS to Maven Central through the
CI/CD pipeline.

5.2.3.2.2 Docker
Docker is a independent platform and specification that enables organizations to 78

seamlessly build, share and run any application. ARXaaS main deployment format is as a
docker container. NAIS, the application platform in NAV IT is designed to run docker
containers. The ARXaaS Dockerfile is built with openjdk:11-jdk as the base image. 79

5.2.3.3 Libraries and Frameworks

5.2.3.3.1 Runtime
Libraries and frameworks that are primarily used when the service is running. ARXaaS uses
several libraries, only the most important will be listed here. For the full list see the ARXaaS
pom.xml dependencies section 80

77 What is Maven - https://maven.apache.org/what-is-maven.html
78 Docker - https://docs.docker.com/get-started/
79 Openjdk Docker Hub - https://hub.docker.com/_/openjdk/
80 ARXaaS pom file - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/pom.xml

116

https://maven.apache.org/what-is-maven.html
https://docs.docker.com/get-started/
https://hub.docker.com/_/openjdk/
https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/pom.xml

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 118/219

Spring Boot
ARXaaS uses Spring Boot 2.1.2.RELEASE. Spring Boot makes it easy to create
stand-alone, production-grade Spring based Applications that you can "just run". The team
has decided to utilize Spring as its backend framework to deliver a web service in
accordance with the service architecture. Spring is the defacto standard for Java web
applications and has great libraries for development of secure, scalable web applications.

Spring Boot Starter Web
Spring Starter for building web, including RESTful, applications using Spring MVC. It uses
Tomcat as the default embedded Servlet/JSP container.

Spring Boot Actuator
Actuator endpoints let you monitor and interact with your application. It includes a number of
built-in endpoints and lets you add your own. For example, the health endpoint provides
basic application health information.

ARX
ARXaaS uses ARX 3.7.1 . ARX is a comprehensive open source software for anonymizing
sensitive personal data. It supports a wide variety of privacy and risk models, methods for
transforming data and methods for analyzing the usefulness of output data. ARXaaS uses
the ARX core library to implement all of the core functionality in the service.

5.2.3.3.2 Development
Libraries and frameworks that are primarily used during development and other purposes not
directly related to running the service.

JUnit
JUnit is an open source Unit Testing Framework for the JVM.

Jacoco
JaCoCo maven plugin to generate code coverage reports for Java projects.

Spring REST docs
From Spring REST docs documentation : 81

Spring REST Docs helps you to document RESTful services. It combines hand-written
documentation written with Asciidoctor and auto-generated snippets produced with Spring
MVC Test. This approach frees you from the limitations of the documentation produced by
tools like Swagger. It helps you to produce documentation that is accurate, concise, and
well-structured.

81 Spring REST Docs - https://spring.io/projects/spring-restdocs

117

https://spring.io/projects/spring-restdocs

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 119/219

5.2.4 Architecture
ARXaaS architecture follows the normal three layers architecture with some deviation. A
typical CRUD application, u ses a application layer, service layer, data layer architecture.
Roughly dividing the controls accepting requests, the services handling the requests and the
data layer which interacts with the necessary data from the database to complete the
request. ARXaaS is not a CRUD application, it can be categorized as a data transform
service. In all use cases it receives data from a service user, does some computation using
the ARX library and returns the result. The architecture ARXaaS has been developed as a
typical controller, service, data layer architecture, as it was the architecture the team was
most familiar with. As the team understood more of the problem domain the architecture
change to a more domain centric model with a fat domain model. The figure below is a
overview the ARXaaS architecture. A more detailed figure is included in chapter 5.2.6
Functionality.

The application layer is responsible for transactions, keeping track of service context,
creating and accessing domain objects, this layer uses the Spring framework extensively. It
encompasses the Controllers and Services in the application

The domain layer is responsible for modeling the anonymization domain, it contains domain
objects that encapsulates the core functionality of the service, this layers is implemented
using regular java objects. This layer encompasses the models , anonymize and analyzer
packages in the ARXaaS project.

The infrastructure layer is responsible for supporting the other layers. In ARXaaS this layer
is mostly occupied by the ARX library that implements the algorithms and models the service
uses.

Figure 45 - ARXaaS architecture overview

118

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 120/219

5.2.5 Endpoints
This document will describe the functionality of each endpoint. This section will explain what
each endpoint does and the response object it sends back to the user, as well as the
different actions used with the request object sent to the endpoints.

5.2.5.1 Index
The index provides the entry point into the service. The response body consists of links to
the available resources in accordance with the HATEOAS protocol. 82

Accessing the index
A GET request is used to access the index

Links

Relation Description

self Link root resource

anonymize Link anonymization controller

analyze Link to analyze controller

hierarchy Link to hierarchy controller

5.2.5.2 Analyzation
This endpoint can be reached by writing "{web address of the service}/api/analyze" and is an
HTTP POST method.

The Analyze controller is used to generate risk profiles for a dataset. The REST controller
receives a request object containing a dataset to be analyzed and the attribute type list of the
dataset. The Controller returns an response object containing a risk profile that includes the
re-identification risk and distribution of risk in a dataset.

Request fields

Path Type Description

data Array dataset to be anonymized

82 REST cookbook HATEOAS - http://restcookbook.com/Basics/hateoas/

119

http://restcookbook.com/Basics/hateoas/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 121/219

attributes Array Attributes types of the
dataset

The risk profile object contains a re-identification risk that describes how anonymous the
dataset is and the distribution of risk in the dataset.

Example of Analyzation HTTP request body:
This example can be found in the appendix in chapter 7.4 Analyzation HTTP JSON request
body.

Example of Analyzation HTTP response body:
This example can be found in the appendix in chapter 7.5 Analyzation HTTP JSON response
body.

5.2.5.3 Anonymization
This endpoint can be reached by writing "{web address of the service}/api/anonymize" and is
an HTTP POST method.

The Anonymize controller is used to create new dataset anonymized according to provided
privacy models and transformation models. The controller receives a request object
containing a dataset to be anonymized, list of attribute types containing transformation
models(hierarchies) and privacy models. The controller returns an response object
containing a anonymized dataset, a risk profile, and metadata for the anonymization process.

Request fields

Path Type Description

data Array dataset to be anonymized

attributes Array Attributes types and
transformation models to be
applied to the dataset

privacyModels

Array Privacy Models to be
applied to the dataset

suppressionLimit Number Suppression limit to be
applied to the dataset

Example of Anonymization HTTP request body:

120

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 122/219

This example can be found in the appendix in chapter 7.6 Anonymization HTTP JSON
request body.

Example of Anonymization HTTP response body:
This example can be found in the appendix in chapter 7.7 Anonymization HTTP JSON
response body.

5.2.5.4 Hierarchy
This endpoint can be reached by writing "{web address of the service}/api/hierarchy" and is a
HTTP POST method.
The endpoint provides a interface to access ARX hierarchy builder features. This endpoint
receives a request object containing the dataset column to create the hierarchy for, the
builder type and builder specific attributes. This endpoint returns a response object
containing the resulting hierarchy.
Currently the following builders are supported:

● Redaction based
● Interval based
● Order based

5.2.5.4.1 Redaction based hierarchy
This method builds hierarchies for categorical and non-categorical values using redaction.
dataset items are:

1. aligned left-to-right or right-to-left,
2. differences in length are filled with a padding character.
3. Equally long values are redacted, character by character from left-to-right or

right-to-left.

Request fields

Path Type Description

column Array List of values to create the
hierarchy for

builder Object Object containing the different
parameters on how to build
the heirarchy for the dataset
column

builder.type String Hierarchy builder type to use
when creating the hierarchy

builder.paddingCharacter String Character to use when
padding the values

121

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 123/219

builder.redactionCharacter String Character to use when
redacting the values

builder.paddingOrder String Direction in which to pad the
values in the column

Example of Redaction based hierarchy HTTP request body:
This example can be found in the appendix in chapter 7.8 Redaction based hierarchy HTTP
JSON request body.
Example of Redaction based hierarchy HTTP response body:
This example can be found in the appendix in chapter 7.9 Redaction based hierarchy HTTP
JSON response body.

5.2.5.4.2 Interval based hierarchy
This method builds hierarchies for non-categorical values by mapping them into given
intervals.

Request fields

Path Type Description

column Array List of values to create the
hierarchy for

builder Object Object containing the different
parameters on how to build
the heirarchy for the dataset
column

builder.type String Hierarchy builder type to use
when creating the hierarchy

builder.intervals Array List containing the different
intervals to be generalized
from and to

builder.intervals[].from Number Interval to generalize from
builder.intervals[].to Number Interval to generalize to
builder.intervals[].label String Optional label to replace the

default generalized interval
values

builder.levels Array List containing parameters on
how to generalize the created
intervals

builder.levels[].level Number Transformation level to create
a generalization

122

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 124/219

builder.levels[].groups Array List containing parameters on

how to group the generalized
column new values

builder.levels[].groups[].grouping Number Number of items to be
grouped from the new
generalized column values

builder.levels[].groups[].label Null Optional label to replace the
default generalized value

builder.lowerRange Object Object containing parameters
on how to define the lower
range interval

builder.lowerRange.snapFrom Number Value to snap from when a
lower value than this defined
value is discovered

builder.lowerRange.bottomTopCodingFrom Number Value to start bottom coding
from

builder.lowerRange.minMaxValue Number If a value is discovered which
is smaller than this value an
exception will be raised.

builder.upperRange Object Object containing parameters
on how to define the upper
range interval

builder.upperRange.snapFrom Number Value to snap from when a
higher value than this defined
value is discovered

builder.upperRange.bottomTopCodingFrom Number Value to start top coding from
builder.upperRange.minMaxValue Number If a value is discovered which

is larger than this value an
exception will be raised.

builder.dataType String data type of the interval to
generalize

Example of Interval based hierarchy HTTP request body:
This example can be found in the appendix in chapter 7.10 Interval based hierarchy HTTP
JSON request body.

Example of Interval based hierarchy HTTP response body:
This example can be found in the appendix in chapter 7.11 Interval based hierarchy HTTP
JSON response body.

5.2.5.4.3 Order based hierarchy
This method builds hierarchies for categorical and non-categorical values by ordering the
dataset items and merging them into groups with the defined sizes.

123

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 125/219

Request fields

Path Type Description

column Array List of values to create the
hierarchy for

builder Object Object containing the different
parameters on how to build
the hierarchy for the dataset
column

builder.type String Hierarchy builder type to use
when creating the hierarchy

builder.levels Array List containing parameters on
how to generalize the dataset
column

builder.levels[].level Number Transformation level to create
a generalization

builder.levels[].groups Array List containing parameters on
how to group the dataset
column

builder.levels[].groups[].grouping Number Number of items to be
grouped from the dataset
column values

builder.levels[].groups[].label String Optional label to replace the
default generalized value

Example of Order based hierarchy HTTP request body:
This example can be found in the appendix in chapter 7.12 Order based hierarchy HTTP
JSON request body.

Example of Order based hierarchy HTTP response body:
This example can be found in the appendix in chapter 7.13 Order based hierarchy HTTP
JSON response body.

124

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 126/219

5.2.6 Functionality
In this section the functionality and how it is implemented in the service. In the figure below
the brown classes are classes with cross cutting concerns, Blue classes are responsible for
hierarchy building, yellow classes are responsible for anonymization and green classes are
responsible for risk analyzation. The figure is simplified to only include the most important
classes. It does not include interfaces. Note that AnonymizationController and
AnalyzeController both use the Request model class to represent requests to the controllers.
The controllers needs are heavily overlapped so a single data structure is used to model a
request.

Figure 46 - UML diagram of ARXaaS

125

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 127/219

5.2.6.1 Controller Layer

Figure 47 - ARXaaS controller layer class diagram

The service has three endpoints, to reach these endpoints a client must use an HTTP POST
call to a web address that is running the service. These endpoints are written using RESTful
design 83

Example of a controller with a REST API endpoint:
@RequestMapping ("/api/analyze")
public class AnalyzationController {

 @PostMapping
 public RiskProfile getPayloadAnalyze (@Valid @RequestBody Request payload,
HttpServletRequest request) {

By following the REST architecture the web address is form in this format {web address of
the service}/api/{function}. The resulting 3 end-points can then be reached by writing:

● {web address of the service}/api/analyze
● {web address of the service}/api/anonymize
● {web address of the service}/api/hierarchy

When an end-point receives a request object, it gets validated if it is correctly formatted.
When the validation process fails the end-point will send a response in the form of an error
message. This validation works as an extra safety net, because the clients are designed to
always send a request object with the correct format. When the validation process succeeds
the service will send a response object containing a JSON body that gets unpacked and

83 REST - https://en.wikipedia.org/wiki/Representational_state_transfer

126

https://en.wikipedia.org/wiki/Representational_state_transfer

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 128/219

mapped by the clients. When the object is correctly formatted but contains invalid
parameters, the end-point will send a response object containing the error message and how
to correct the error.

Controller exception handling
ARXaaS uses a Exception controller to intercept exceptions thrown in the service when it
propagates up to the controller layer.This Exception controller ensures that errors and thrown
exceptions are handled and returned with correct HTTP status code and with a uniform
message format.

/**
* Intercepts Exceptions thrown in the service. Ensures a uniform response format and that
a correct HTTP status is set
*/
@ControllerAdvice
class GlobalControllerExceptionHandler {

 private Logger logger = LoggerFactory.getLogger(this .getClass());

 /**
 * Handles all exceptions thrown unless cached by a more specific handler
 * @param ex Exception thrown
 * @param request WebRequest from client
 * @return ResponseEntity
 */
 @ExceptionHandler (Exception.class)
 public final ResponseEntity<Object> handleExceptionAllExceptions (Exception ex,
WebRequest request) {
 logger.error("Exception.class error, HttpStatus: INTERNAL_SERVER_ERROR,
ExceptionToString: " , ex);
 ExceptionResponse exceptionResponse = new ExceptionResponse(new Date(),
 ex.getMessage(),
 request.getDescription(false));
 return new ResponseEntity<>(exceptionResponse, HttpStatus.INTERNAL_SERVER_ERROR);
 }

127

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 129/219

5.2.6.2 Service Layer
Services are used to resolve queries from the controller layer.

Figure 48 - ARXaaS service layer class diagram

The main services are relative light weight. Note that the Anonymization service is
dependent on the Analyzation service. When resolving a anonymization request the services
includes a risk profile for the anonymized dataset. This is done to reduce necessary calls to
the ARXaaS service.

@Service
public class AnonymizationService {

 private final Anonymizer anonymizer;
 private final Analyzer analyzer;

 @Autowired
 public AnonymizationService (Anonymizer anonymizer, Analyzer analyzer) {
 this .anonymizer = anonymizer;
 this .analyzer = analyzer;
 }

 public AnonymizationResultPayload anonymize (Request payload) {

 AnonymizeResult result = this .anonymizer.anonymize(payload);
 Request afterAnalysisPayload =
 new Request(result.getData(), payload.getAttributes(), null , null);
 RiskProfile afterRiskProfile = analyzer.analyze(afterAnalysisPayload);
 return new AnonymizationResultPayload(result, afterRiskProfile);
 }
}

128

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 130/219

5.2.6.3 Domain Layer
A big part of the design of the domain layer was to keep a clean separation between
ARXaaS domain models and ARX classes and components. This is to make a future
developments that might even swap out ARX for another library, as easy as possible. The
goal is to keep clear boundaries between the application, libraries and frameworks.

ARXaaS has interfaces for the domain services. Anonymizer which represents a objects that
should do the actual anonymizing and Analyzer which should analyze re-identification risk.

Anonymizer interface
/**
* Public Interface to be forfilled by data anonymizer classes
*/
public interface Anonymizer {

 /**
 * Method to run anonymization on data in the payload with the provided parameters in
the payload
 * @param payload {@link Request} object containing the data to be anonymized and
params to use in anonymization
 * @return an {@link AnonymizeResult} object containing the best case anonymization
and statistics
 */
 AnonymizeResult anonymize (Request payload) ;
}

Classes that implemetents these interfaces can then use ARX to do their job.

Extract from the top of ARXAnonymizer class

/**
* Anonymizer class using the ARX library to implement the anonymization
*/
@Component
public class ARXAnonymizer implements Anonymizer {

 private final DataFactory dataFactory;
 private final ConfigurationFactory configFactory;
 private final Logger logger;
 private static final String exceptionError = "Exception error: %s" ;

 @Autowired
 public ARXAnonymizer (DataFactory dataFactory, ConfigurationFactory configFactory) {
 this .dataFactory = dataFactory;
 this .configFactory = configFactory;
 logger = LoggerFactory.getLogger(this .getClass());
 }

129

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 131/219

 /**
 * Method to run anonymization on data in the payload with the provided parameters in
the payload
 * @param payload {@link Request} object containing the data to be anonymized and
params to use in anonymization
 * @return an {@link AnonymizeResult} object containing the best case anonymization
and statistics
 */
 @Override
 public AnonymizeResult anonymize (Request payload) {
 Data data = dataFactory.create(payload);
 ARXConfiguration config = getARXConfiguration(payload);
 ARXResult result = getARXResult(data, config);
 return packageResult(result,payload);
 }

5.2.7 Security

ARXaaS is a service that is intended to process sensitive data, so it is of importance that its
transactions are protected by end to end encryption. HTTPS is an acknowledged and robust
protocol that offers suitable protection, but it places unique demands on every potential
owner of a server running ARXaaS. HTTPS is not achieved by the push of a button, and that
is why an unconfigured instance of ARXaaS will default to running with regular HTTP. In
order to activate HTTPS protection, the owner must possess an SSL certificate provided by a
CA (Certificate Authority), and it must be applied during the configuration of the ARXaaS
instance. See the chapter on 6.1.1.2 HTTPS Configuration, for guide to setup ARXaaS with
HTTPS.

5.2.7.1 SSL Handshake

This segment contains a general explanation of how the SSL Handshake works, and why it
is essential to making HTTPS secure. Further, it explains how ARXaaS utilizes HTTPS for
security.

1. A request sent from a client to a service supporting HTTPS is the first step in the SSL
Handshake.

2. The service responds to the client's request with a new request containing the
service’s certificate. The service will await a response from the client.

3. The client will verify the certificate authenticity with a request to the certificate's CA.
4. Response to the client is sent from the CA. The response contains information

whether the service's certificate is valid and trusted.
5. The client will respond to the awaiting service accordingly, depending on the

response content from the CA.

130

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 132/219

6. If the service reads OK from the response, the client and service will have
established a secure connection, and they will proceed with execution of their
originally intended transaction.

5.2.8 Monitoring
ARXaaS uses the Spring Actuator library to implement several endpoints in the service for
gathering metrics on the application. The main type of endpoint ARXaaS uses is a
prometheus metrics endpoint. Prometheus is a popular and powerful open source metrics 84

and logging solution.

Important metrics being recorded is:Important metrics being recorded is:

- Status of running containers
- Number of failed requests
- Memory usage
- CPU usage
- Response time

Figure 49 - Screen grab of ARXaaS metrics dashboard when running on NAIS

84 Prometheus - https://prometheus.io/

131

https://prometheus.io/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 133/219

5.2.9 Logging
ARXaaS has logging implemented using log4j. For every dataset that is analyzed and
anonymized. The application provides metrics for received and completed requests. The log
displays the size of the dataset, number of rows and columns, source IP, dataset bytesize,
privacy model used, suppression limit and request processing time. In the case of an error or
exception, a full stack trace is printed to make debugging faster and more efficient.

2019 - 05 - 10 11 : 48 : 39 .237 INFO 29198 --- [nio- 8080 -exec- 2]
n .o.a.c.AnonymizationController : Request received, Size of
dataset: Number of rows = 12 , Number of columns 3 , Bytesize = 357 ,
Request Source IP = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 Privacy models used = K-Anonymity,
Suppression Limit used = null
2019 - 05 - 10 11 : 48 : 40 .403 INFO 29198 --- [nio- 8080 -exec- 2]

n .o.a.c.AnonymizationController : Request complete, Size of
dataset: Number of rows = 12 , Number of columns 3 , Bytesize = 360 ,
Request Source IP = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 Request processing time = 1167
milliseconds

5.2.10 License
ARXaaS is distributed under the MIT license. See the ARXaaS License . 85

5.2.11 Error description
This segment contains a general explanation on the different error messages that ARXaaS
sends as a response, and the format the message.

5.2.11.1 HTTP status codes
RESTful notes tries to adhere as closely as possible to standard HTTP and REST
conventions in its use of HTTP status codes.

Status Code Usage

200 OK The request completed successfully

400 Bad Request The request was malformed. The response
body will include an error providing further
information

404 Not Found The requested resource did not exist

500 Internal Server Error the server encountered an unexpected
condition that prevented it from fulfilling the

85 ARXaaS License - https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/LICENSE

132

https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/LICENCE

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 134/219

request.

An error response contains a timestamp, a message containing the error and details telling
which end-point the error originated.

Figure 50 - Error response contents

A 404 http status code happens when trying to reach an end-point that does not exist in the
service.

A 400 http status code is shown, whenever ARXaaS wasn't able to fulfill the services it
provides.

Example of 400 http responses:

● Unable to anonymize a dataset

Figure 51 - Unable to anonymize error message

● Invalid attribute type

Figure 52 - Invalid attribute type error message

● Invalid dataset or attribute type format

Figure 53 - Failed to create dataset error message

133

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 135/219

5.3 Client side introduction
There are currently two clients available, that connect to the service. A python based client
and a web application.

5.4 PyARXaaS

Figure 54 - diagram showing abstract usage of PyARXaaS

PyARXaaS is a Python client package that provides abstractions for interacting with a
ARXaaS instance. It is inspired by other client packages like PyGithub . It makes the 86

integration of the risk analysis and de-identification functionality of ARXaaS as easy and
intuitive as possible. The main user group of the package are data scientist that are familiar
and accustomed to work with data in Python. The package delivers on the client requirement
that the anonymization functionality was to be made available in Python. The package API
has been developed with feedback from data scientist at NAV IT. The team notes that the
final product has been very well received by the project stakeholders.

The package features

● ARXaaS class for connecting to and calling endpoints the ARXaaS service exposes.
● dataset class for encapsulating and configuring a dataset
● Privacy Model classes for creating and configuring the Privacy Models to use in

anonymization.

Pandas integration

PyARXaaS was designed from day one with easy integration with pandas DataFrames in 87

mind. The pandas package is described in more detail in the runtime libraries section. It's
important to note that pandas the most used library in the Python data science world. The
main class in the package, the DataFrame , is a class that represents a table of data in a 88

Python context. The DataFrame class is highly optimized and includes a lot of functionality
for working with data. The team set a goal for for the PyARXaaS package to be as easy as

86 PyGithub - https://github.com/PyGithub/PyGithub
87 Pandas - https://pandas.pydata.org/
88 Pandas DataFrame - https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

134

https://github.com/PyGithub/PyGithub
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 136/219

possible to work with pandas DataFrame and PyARXaaS support the conversion to and from
DataFrame for several of the domain classes.

5.4.1 Short presentation
PyARXaaS is structured following the Python packaging use guide . Below is a short 89

summary of the package files and directories.

├── docs - Contains text files and configuration scripts for the package documentation
├── .gitignore
├── LICENSE
├── MANIFEST.in
├── pyarxaas - Source directory, contains the packages Python source code
├── README.md - Project readme, contains a quick introduction and overview
├── .readthedocs.yml
├── requirements.txt - Contains development dependencies
├── samples - Contains sample Python scripts that use PyARXaaS
├── setup.py - Installation script for the package, contains package metadata
├── tests - Package test suite
├── .travis.yml
└── VERSION

The package source files can be viewed in full on the PyARXaaS Githug page:
https://github.com/oslomet-arx-as-a-service/PyARXaaS

Figure 55 - PyARXaaS version control host repository

89 Python packaging use guide - https://packaging.python.org/tutorials/packaging-projects/

135

https://github.com/oslomet-arx-as-a-service/PyARXaaS
https://packaging.python.org/tutorials/packaging-projects/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 137/219

5.4.2 Packaging and release
Python packages can be released in several different distribution formats. A package release
can consist of more than one format in the release artifact. PyARXaaS is packaged as
source distribution and as a built distribution.

Source distribution
A distribution format commonly referred to as sdist is distribution of the Python source files
and package metadata with only a simple compression step. A installation step is required
on for users of the distribution.

Built distribution
A distribution format containing files and metadata that only needs to be moved to the correct
location on the target system to be installed. PyARXaaS uses the wheel format for built 90

distribution.

Release
Every release of PyARXaaS is released to the Python Package Index (PyPI) . The full 91

version history with download links can be found on the package page
https://pypi.org/project/PyARXaaS/ .

Figure 56 - showing the PyARXaaS PyPI page.

PyPI is the de-facto standard distribution platform for Python packages. Installing packages
to be used in a Python project is simple. The Python installation comes with a tool; pip , for
downloading and installing packages from PyPI to be used in the users script or application.

pip install pyarxaas

90 PEP 427 -- The Wheel Binary Package - https://www.python.org/dev/peps/pep-0427/
91 PyPI - https://pypi.org/

136

https://pypi.org/project/PyAaaS/
https://www.python.org/dev/peps/pep-0427/
https://pypi.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 138/219

The team decided to use semantic versioning to version the package releases. Semantic
versioning is used by most Python packages.

From Semantic Versioning 2.0.0 : 92

“Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,
MINOR version when you add functionality in a backwards-compatible manner, and
PATCH version when you make backwards-compatible bug fixes.”

5.4.3 Release Pipeline
The reasoning and decision process behind the CI/CD pipeline is described in chapter 3.2.1.2
Continuous integration and Continuous delivery .

Figure 57 - Diagram showing the PyARXaaS CI/CD pipeline

The Diagram show the CI/CD pipeline for PyARXaaS. From the commit to Github to it is
released as a package on PyPI. Developers on PyARXaaS publishes pull requests to the
Github repository. Every pull request is then run through a Travis CI job . The job consists of 93

the following stages:

● Test
The tests created under the test/ directory in PyARXaaS is ran. If all tests are
successful a test rapport is generated and published to Code Climate for processing.

● Deploy
If the branch Travis CI is running is the master branch and the branch is tagged as a
release Travis deploys the branch to PyPI as a new package version.

92 Semantic Versioning 2.0.0 - https://semver.org/
93 PyARXaaS Travis CI job script - https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/.travis.yml

137

https://semver.org/
https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/.travis.yml

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 139/219

In addition to the Travis CI job the following services are being ran at the branch.

● Code Climate
Code Climate is triggered by the creation of a new pull request through a Github
webhook . It runs a code complexity test and flags problematic code. Code climate 94

also receives the test rapport from the tests ran at Travis CI and provides feedback
on the test coverage of the branch.

● Snyk
Snyk runs a search of the dependencies defined in the requirements.txt file and flags
any dependencies with a known vulnerability

The view the developer has of the status of their pull request looks like this.

Figure 58 - PyARXaaS pull request view on Github

New releases are controlled using the Github release system . When a new release is 95

created the code in master branch is packaged and published to PyPI.

Documentation

PyARXaaS uses the Read the Docs service as its documentation hosting platform. Read 96

the Docs simplifies software documentation by automating building, versioning, and hosting
of documentation for projects. The hosting is free for open source projects like PyARXaaS.
When a new commit is merged to master branch a new build of the documentation is
triggered on Read the Docs. A badge showing the build status and serving as a link to the
PyARXaaS documentation is available on the PyARXaaS Github page.

Figure 59 - of the documentation badge

94 Github Web hook - https://developer.github.com/webhooks/
95 Github releases - https://help.github.com/en/articles/creating-releases
96 Read the Docs - https://readthedocs.org/

138

https://developer.github.com/webhooks/
https://help.github.com/en/articles/creating-releases
https://readthedocs.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 140/219

5.4.4 Technologies
PyARXaaS is written in Python 3. The project officially only supports Python 3.6 and
upwards. Python is an interpreted, dynamically typed, object-oriented, high-level
programming language used in many different software fields. Its main benefits is its
expressive syntax and extensive standard library as well as one of the most extensive
third-party library ecosystem.

“ Often, programmers fall in love with Python because of the increased productivity it
provides. ” 97

While Python got its start as a scripting and system automation tool it has gained popularity
in the data-science field in recent years. NAV IT AI-lab data-scientists use python extensively
in their day-to-day work.

5.4.5 Libraries
PyARXaaS leverages a couple of third-party packages. These packages are divided into
runtime libraries that are used by PyARXaaS when executing and development libraries that
are used for testing, documentation and other development related tasks.

5.4.5.1 Runtime libraries
The runtime libraries, referred to from here as dependencies, are set in the package setup.py
file. Setup.py contains metadata for the project. The part that describes the package
dependencies that must be installed to utilize the package is the install_requires field.

install_requires=["uplink==0.7.0" ,

 "pandas==0.24.2" ,

 "IPython==7.5.0"],

From the setup.py file https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/setup.py

The dependencies are installed automatically when installing the PyARXaaS package. The
dependencies are versioned to increase stability between installations and to mitigate the
risk of malicious software being installed through a corrupted dependency. Versioning
combined with the Snyk tool described in the test documentation results in a robust risk
mitigation.

97 What is Python? Executive Summary - https://www.python.org/doc/essays/blurb/

139

https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/setup.py
https://www.python.org/doc/essays/blurb/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 141/219

Uplink 98

Uplink is a python package intended to make creating specialized wrappers for web APIs
much easier. It features a decorator oriented API for creating wrappers. Uplink is used in
PyARXaaS for handling the HTTP connection to ARXaaS endpoints. This is abstracted in the
ARXaaSConnector class.

from uplink import Consumer, get, headers, Path, Query, post, Body, json

class ARXaaSConnector (Consumer):

 """ Understands connection to ARXaaS endpoints"""

 def __init__ (self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self._logger = logging.getLogger(__name__)

 @raise_for_status

 @json

 @post("api/anonymize")

 def anonymize_data (self, payload: Body):

 """Post data to AaaS Backend"""

pandas 99

Pandas is an open source , high performance python package for data manipulation and analysis. As
the pandas.DataFrame class is more or less the standard data structure for doing data analysis and
manipulation PyARXaaS features easy conversion to and from the pandas.DataFrame class.

This is method in the Dataset class returns a pandas.DataFrame representation of the dataset object.

def to_dataframe (self) -> pandas.DataFrame:
 """
 Create pandas DataFrame of the dataset

 :return: pandas.DataFrame
 """

 return self._data.dataframe

IPython 100

IPython is a toolkit package used to integrate with the Jupyter notebook editor. In PyARXaaS
it is used to provide Jupyter notebook specific visualization.

98 Uplink package documentation - https://uplink.readthedocs.io/en/stable/
99 Pandas package documentation - https://pandas.pydata.org/
100 Python package documentation - https://pypi.org/project/ipython/

140

https://uplink.readthedocs.io/en/stable/
https://pandas.pydata.org/
https://pypi.org/project/ipython/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 142/219

5.4.5.2 Development libraries

Development libraries are dependencies used for testing, documentation generation or code
analysis. These dependencies are not installed by the end user of the package, but by
developers and continuous integration tools. These dependencies are managed and used by
the package developers so they are not subject to the same strict versioning as the runtime
dependencies. The dependencies are described in the package requirements.txt file.
PyARXaaS requirements.txt can be found here:
https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/requirements.txt

At the writing of this document PyARXaaS contains the following development
dependencies:

Sphinx 101

Sphinx is a tool for creating beautiful documentation. It was originally created to generate the
documentation for the Python language. It lets the users combine written documentation with
the documentation generated from source code. PyARXaaS uses Sphinx to generate the
user guides, tutorials and API documentation. Every new update of PyARXaaS triggers a
new build of the documentation ensuring that the documentation stays up-to-date.

nbsphinx 102

Nbshinx is a extension for Sphinx that makes it possible to include Jupyter notebooks in the
Sphinx generated documentation. PyARXaaS documentation includes docs generated from
Jupyter notebooks.

pytest 103

Pytest is a testing framework for Python projects. It is a popular and widely used testing
framework. Features a richer testing framework than the unittest library included in the
Python standard library. PyARXaaS uses pytest in the continuous integration pipeline as
pytest includes extensions for generating test reports used to generate the test coverage
score displayed on the project Github page:
https://github.com/oslomet-arx-as-a-service/PyARXaaS

101 Sphinx documentation - http://www.sphinx-doc.org/en/master/
102 Jupyter Notebook Tools for Sphinx - https://nbsphinx.readthedocs.io/en/0.4.2/
103 Pytest documentation - https://docs.pytest.org/en/latest/

141

https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/requirements.txt
https://github.com/oslomet-arx-as-a-service/PyARXaaS
http://www.sphinx-doc.org/en/master/
https://nbsphinx.readthedocs.io/en/0.4.2/
https://docs.pytest.org/en/latest/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 143/219

5.4.6 Functionality
The package source code is located in the pyarxaas directory. It has the following structure:

pyarxaas/
├── aaas_connector.py - contains classes and functions for handling ARXaaS connection
├── arxaas.py - contains the public ARXaaS Wrapper class
├── converters.py - contains util code for conversion between different data formats
├── hierarchy - subpackage, contains hierarchy generation classes
├── __init__.py
├── models - subpackage, contains domain classes
└── privacy_models.py - contains privacy model classes

5.4.6.1 Package components
Figure 60 shows a class diagram for the package. The purpose of the diagram is to give a
overview of the functionality in the package and how it is structured. Green colored classes
are classes used to connect to and interact with ARXaaS. The Orange are classes
associated with hierarchy generation. Blue classes are associated with the dataset
abstraction. Purple classes are model classes, abstractions for responses from ARXaaS.
Red classes are Privacy Model classes used to configure a request to anonymize a dataset.

Figure 60 - Class diagram for PyARXaaS

5.4.6.1.1 Connecting to ARXaaS

142

https://www.draw.io/?page-id=_X0hVp-vB-lxYh2Jmlw1&scale=auto#G1mJ_09AaRLuKcjKE3wGVf7jt3aQSjbPm_

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 144/219

Figure 61 - Class diagram for ARXaaS abstraction classes

Figure 61 shows the classes associated with connecting to, and handling requests and
responses from ARXaaS. The main class is the ARXaaS class which has the role of
abstracting the service connection away for the user of the library. The ARXaaS class
delegates to a ARXaaSConnector object for the HTTP request and response details. The
RequestBuilder Class assists in building up a correctly formed JSON request object.

ARXaaS creation
import the aaas module
from pyaaas import ARXaaS

establishing a connection to the ARXaaS service using the URL
arxaas = ARXaaS("http://localhost:8080")

The ARXaaS class implements methods to anonymize a dataset according to provided
Privacy Models, create a risk profile for a dataset object and generate hierarchies for from a
dataset field/column.

risk_profile(dataset: dataset)
Returns a RiskProfile for the passed in dataset. See the chapter on 6.2.3.1 Analyze the risk
of a dataset, for examples on how to use the method.

def risk_profile (self, dataset: dataset) -> RiskProfile:

 """

 Creates a risk profile for a provided dataset

 RiskProfile contains:

 - re-identifiaction risks

 - distributed risk

143

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 145/219

 :param dataset: dataset to create a risk profile for

 :return: RiskProfile

 """

 analyze_request = self._risk_profile_payload(dataset)

 response = self._risk_profile(analyze_request)

 metric_dict = json.loads(response.text)

 return RiskProfile(metric_dict)

anonymize(self, dataset: dataset, privacy_models, suppression_limit: float)
The method for doing anonymization of a dataset with the package. The method takes a
dataset object to anonymize, privacy model(s) to apply and a optional supperions limit which
configures the weighting of suppression vs data utility for the anonymization.

def anonymize (self, dataset: dataset, privacy_models,suppression_limit: float = None) ->
AnonymizeResult:
 """
 Attempt to anonymize a dataset with provided privacy models

 :param dataset: dataset to be anonymized
 :param privacy_models: privacy models to be used in the anonymization
 :param suppression_limit: suppression limit to be used in the anonymization
 :return: dataset with anonymized data
 """
 request_payload = self._anonymize_payload(dataset, privacy_models, suppression_limit)
 response = self._anonymize(request_payload)
 return self._anonymize_result(response)

hierarchy(self, redaction_builder, column)
The hierarchy method is called to create new generalization hierarchies for a dataset
field/column. It accepts a HierarchyBuilder object and a column and passes them on to the
ARXaaS service which creates the resulting hierarchy. The generated hierarchy is returned
as a regular Python list[list].

def hierarchy (self, redaction_builder, column) :
 """
 Creates a value generalization hierarchy with the passed in builder for the passed in
column.

 :param redaction_builder: a Hierarchy builder instance
 :param column: a list of values
 :return: list[list] containing the created hierarchy
 """

 request = redaction_builder._request_payload()
 request["column"] = column
 response = self._connector.hierarchy(request)

144

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 146/219

 response_dict = json.loads(response.text)
 return response_dict["hierarchy"]

5.4.6.1.2 Hierarchy Builders
Hierarchy builder Classes in the hierarchy sub-package represents different strategies for
creating hierarchies. The classes in the hierarchy sub-package mirror the hierarchy builder
classes in ARXaaS. The classes function is to provided objects representing a given
hierarchy type. Letting the package user set hierarchy configurations through class
constructors and methods. Figure 62 shows a class diagram for the hierarchy builder
classes. Note that GroupingBasedHierarchy is a abstract base class (ABC).

Figure 62 - Hierarchy Builder class diagram

RedactionHierarchyBuilder
RedactionHierarchyBuilder is one of the hierarchy builders available in the hierarchy
package. It can be instantiated with configurations through its constructor. These
configurations are:

- padding_char: The character to use when padding values in the generated hierarchy
- redaction_char: The character to use when redacting symbols from the column

values in the generated hierarchy
- padding_order: The order in which to pad the values from the column, could be left to

right or right to left
- redaction_order: The order to redact symbols from the column value in the generated

hierarchy

145

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 147/219

The class uses default arguments for all the constructor parameters, making creating a
default RedactionHierarchyBuilder simple. See the 6.2.4.4 Hierarchy Generation for more on
the usage of RedactionHierarchyBuilder and the other hierarchy builder.

class RedactionHierarchyBuilder:
 """
 Understands building redaction based hierarchies
 """

 class Order (Enum) :
 LEFT_TO_RIGHT = "LEFT_TO_RIGHT"
 RIGHT_TO_LEFT = "RIGHT_TO_LEFT"

 def __init__ (self, padding_char:str = " " ,
 redaction_char: str = "*" ,
 padding_order: Order = Order.RIGHT_TO_LEFT,
 redaction_order: Order = Order.RIGHT_TO_LEFT) :
 self._assert_padding_is_valid(redaction_char, padding_char)
 self._padding_char = padding_char
 self._reduction_char = redaction_char
 self._padding_order = padding_order
 self._redaction_order = redaction_order

5.4.6.1.3 Privacy Models
Privacy model classes represents the available Privacy models in ARXaaS service. The
classes lets the package user instantiate Privacy models objects with user specified
configuration through the class constructor. The Privacy Models objects can be passed along
with a dataset object to the ARXaaS class anonymize method to anonymize a dataset
according to the Privacy Model objects criterion and configuration.

146

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 148/219

 Figure 63 - Privacy models class diagram

PrivacyModel - ABC
PrivacyModel is the abstract base class (ABC) all other PrivacyModel subclass. In another
language such as Java, PrivacyModel would most likely be implemented as a interface.
Python has no concept of interface, so the closest thing was to implement the class as a
ABC.

class PrivacyModel (ABC, Mapping) :
 """
 Documentation of the privacy models implemented in the ARXaaS service and the
definition of the parameters
 each privacy model takes.
 """
 def __init__ (self) :
 self._anonymity_name = "Privacy Model"
 self._print_message = self._anonymity_name
 self._internal_dict = {}

 def __getitem__ (self, item) :
 return self._internal_dict[item]

 def __len__ (self) -> int:
 return len(self._internal_dict)

 def __iter__ (self) :
 return iter(self._internal_dict)

 @property
 def name (self) -> str:
 return self._anonymity_name

 def __str__ (self) :
 return self._print_message

 def _payload (self) :
 return { "privacyModel" : self.name, "params" : self._internal_dict}

KAnonymity

class KAnonymity (PrivacyModel) :
 """
 Configuration class for K-Anonymity

 :param k: Value of K to anonymize the dataset. K must have a value of 2 or higher to
take effect.

 """

 def __init__ (self, k) :
 super().__init__()

147

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 149/219

 self._internal_dict = { "k" : k}
 self._anonymity_name = "KANONYMITY"
 self._print_message = f"KAnonymity(k= {k})"

5.4.6.1.4 dataset class
The dataset class represents the concept of a tabular dataset containing fields referred to as
attributes. The dataset attributes have the concept of AttributeType associated with them.
See the chapter on 2.2.2 Anonymization, for more on attribute types. Optionally a attribute
might have a generalization hierarchy associated with itself. The hierarchy describes how the
attribute might be generalized in a anonymization process.

Figure 64 - dataset class diagram

Dataset construction
The Dataset class has a constructor that assures that the object created is well formed. If
attribute_types are not passed they will be set to the default value; quasi identifying.

class dataset:

 """

 Understand tabular data containing personal data.

 """

 _DEFAULT_ATTRIBUTE_TYPE = AttributeType.QUASIIDENTIFYING

 def __init__ (self, data: list, attribute_types: Mapping = None) :

 if attribute_types is None :

 attribute_types = self._create_default_attribute_map(data[0])

 self._data = Data(data[0], data[1 :])

 self._attributes = self._create_attributes(attribute_types)

148

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 150/219

To make construction of a Dataset more simple and to aid in creation from other Python
objects factory methods have been implemented. The factory methods are class methods
that are to be called on the class object to create a new instance of dataset.

Dataset factory methods

@classmethod
def from_pandas (cls, dataframe: pandas.DataFrame) :
 """
 Create a dataset from a pandas DataFrame

 :param dataframe: pandas Dataframe
 :return: dataset
 """

 headers = dataframe.columns.values.tolist()
 values = dataframe.values.tolist()
 data = [headers] + values
 return dataset(data=data, attribute_types=cls._create_default_attribute_map(headers))

@classmethod
def from_dict (cls, dictionary) :
 """
 Create dataset from a python dictionary

 :param dictionary: Mapping object to create dataset from
 :return: dataset
 """

 df = pandas.DataFrame.from_dict(dictionary)
 return cls.from_pandas(df)

5.4.6.1.5 Response objects
ARXaaS response object are a group of objects representing the response data returned
from calls to the ARXaaS service. These objects are instantiated by other objects the
PyARXaaS package, usually the ARXaaS class. They are not intend for the user of the
package to instantiate. The objects have properties to expose data generated by ARXaaS,
and methods for easy conversion to other types such as pandas.DataFrame.

149

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 151/219

Figure 65 - ARXaaS response objects class diagram

RiskProfile

The RiskProfile class represents a re-identification risk profile for a Dataset. Returned when
a user of PyARXaaS makes a call to the ARXaaS class .risk_profile(dataset) method.
The methods accepts a dataset object and returns a RiskProfile object containing data
describing different risk values calculated from the dataset.

class RiskProfile:
 """
 Represents the re-identification risks associated with a dataset
 """

 def __init__ (self, metrics: Mapping) :
 self._re_identification_of_risk =
copy.deepcopy(metrics["reIdentificationRisk"]["measures"])
 self._distribution_of_risk = copy.deepcopy(metrics["distributionOfRisk"])
 self._attacker_success_rate =
copy.deepcopy(metrics["reIdentificationRisk"]["attackerSuccessRate"]["successRates"])
 self._quasi_identifiers = metrics["reIdentificationRisk"]["quasiIdentifiers"]
 self._population_model = metrics["reIdentificationRisk"]["populationModel"]

150

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 152/219

RiskProfile exposes properties for risks, and attacker success rates. See the chapter on 2.4
Risk assessment, for more explanation on the different risks and attack models.

@property
def re_identification_risk (self) :
 """
 Re-identification risk metrics for a given dataset

 :return: dict containing re-identification metrics
 """
 return copy.deepcopy(self._re_identification_of_risk)

@property
def distribution_of_risk (self) :
 """
 Distribution of risk for a given dataset

 :return: dict containing the distribution of risks in a given dataset
 """
 return copy.deepcopy(self._distribution_of_risk)

@property
def attacker_success_rate (self) :
 """
 Attacker success rates against re-identification for a given dataset

 :return: dict containing the attacker success rate.
 """
 return copy.deepcopy(self._attacker_success_rate)

RiskProfile implements methods for conversion of the risks to pandas.DataFrame for easy
consumption and use of the data.

def re_identification_risk_dataframe (self) -> DataFrame:
 """
 Re-identification risk as a pandas.DataFrame

 :return: pandas.Dataframe with risk metrics
 """
 df = DataFrame([self._re_identification_of_risk])
 return df

def distribution_of_risk_dataframe (self) -> DataFrame:
 """
 Distribution of risk as a pandas.DataFrame

 :return: pandas.DataFrame
 """
 return DataFrame.from_dict(self._distribution_of_risk["riskIntervalList"])

151

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 153/219

5.4.7 Security
PyARXaaS being a package to be used in a users program or script, should not put to much
restrictions and demands on the context the users uses the package in. It should not trick the
use into making unsecure programs. The package should be configured by default to safe
options, but always letting the user override where possible. How this materializes in the
package is in the HTTPS certificate validation.

The service, ARXaaS, can be configured to use HTTPS or be located behind a proxy that
adds HTTPS to the service calls. PyARXaaS uses the Uplink library, described in the library
subchapter to complete HTTP(S) requests. By default this library does not accept self-signed
certificates, certificates not issued by a trusted third-party CA authority. Often internal
networks or test environments use HTTPS with self-signed certificates, so PyARXaaS should
support this use case. By default PyARXaaS throws an exception if a call is made to a
ARXaaS instance while using a self-signed certificate. Configured to allow self-signed
certificates, PyARXaaS will resolve the request, logging a warning to the user.

5.4.8 Logging
PyARXaaS supports logging using the Python standard library logging module. This lets a
user configure the logging for their script or program and PyARXaaS will follow those
configurations.

5.4.9 License
PyARXaaS is distributed under the MIT license. See the PyARXaaS License 104

104 PyARXaaS License - https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/LICENSE

152

https://github.com/oslomet-arx-as-a-service/PyARXaaS/blob/master/LICENSE

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 154/219

5.5 WebARXaaS

Figure 66 - Sequence diagram of WebARXaaS

5.5.1 Short presentation
As a stretch goal, the product owner wished for a way to quickly access the ARX
functionality. It was therefore decided to implement an interactive web frontend, by taking
advantage of the flexible REST API provided by the ARXaaS service. Making this client
available will give the user the possibility to analyze or anonymize their data, without the
need to install software on their local machine.

5.5.2 Technologies
The interactive Web service was implemented in React using multiple third-party frameworks
in order to provide the best possible service

5.5.2.1 React

React is a Javascript library for building interactive web user interfaces. It optimizes the
process of re-rendering the DOM of the loaded webpage, making dynamically re-rendering
content on the webpage after its loaded. It also lets us split our code into many

153

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 155/219

single-purpose components which speeds up the development process, and makes it more
maintainable . 105

5.5.2.2 React-BootStrap

Well tested open source toolkit for making flexible interfaces. Which will fit most screen form
factors out there. Also simplifies css styling, giving the page a more professional expression.

5.5.2.3 Papa Parse
Powerful tool for parsing and building CSV files with JavaScript. Allow us to provide state of
the art support for all different forms of CSV files while taking care of edge cases. This also
allows us to quickly export the anonymized data from the internal format so the user can
download the result of the anonymization as a CSV file.

5.5.3 Functionality

All the functionality can be accessed through a single page application. Where the two main
functionalities is analyzation and anonymization .

5.5.3.1 DataImport

Figure 67 - Importing of dataset on WebARXaaS

The data import step is mandatory whenever the user wish to analyze or anonymize the
data. To load data the user clicks the load button, and selects a CSV file. Once the CSV file
is loaded, a automatically generated section will be displayed, showing each of the attribute
headers from the csv file below the data import area.

Figure 68 - dataset headers generated

105 Knowing reactJS - http://developer.ibm.com/recipes/tutorials/knowing-of-reactjs-with-advantages-limitations-challenges

154

http://developer.ibm.com/recipes/tutorials/knowing-of-reactjs-with-advantages-limitations-challenges

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 156/219

5.5.3.2 Privacy model builder
When anonymizing data the user needs to add one or more privacy models describing which
algorithm which will used to anonymizing the data. Each of the models has its own set of
parameters which is used to configure how the anonymization process will behave.

Figure 69 - WebARXaaS privacy model section

5.5.3.3 Analyzation
The analyzation feature requires that the user already has loaded a CSV file, and set the
correct attribute types . By pressing the Analyze button, the website will make a call to the
backend service on /api/analyzation containing a JSON formatted payload, containing all the
loaded data together with metadata. Once the response is received back from the service it
will render multiple tables below containing metrics describing the analyzation quality.

Metric table Content

Re Identification
risk

Contains percentage likelihood on various re-identification risks

Risk interval Gives metrics on how large portions of the entries in the data which is
affected by each risk range

5.5.3.4 Anonymization

The anonymization feature requires that the user already loaded a CSV file, set the correct
attribute types , and uploaded a CSV file containing a generalization hierarchy/transformation
model for each of the quasi-identifying attributes.

By pressing the Anonymize button, the website will make a call to the backend service on
/api/anonymization containing a JSON formatted payload, containing all the loaded data
together with metadata. Once the response is received back from the server, it will display
tables containing the following tables.

155

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 157/219

Metric table Content

Anonymization
data

The anonymized version of the dataset

Re Identification
risk

Contains percentage likelihood on various re-identification risks

Risk interval Gives metrics on how large portions of the entries in the data which is
affected by each risk range

Process time The time spent by the backend anonymizing the request in
milliseconds.

privacy models Containing metadata used by the service for each of the applied
privacy models, and transformation model level used on the
quasi-identifying attribute types.

After the data is anonymized the anonymized dataset can be downloaded as a csv file with
the click of a button. This will make the web service package the as a csv file using “;” as a
delimiter as it is the preferred style in most european countries.

Figure 70 - WebARXaaS download button for anonymized dataset

5.5.4 Operations

This web application is built using Node.js . All the necessary dependencies for the project is
specified inside the package.json file, in the root of the project directory.
Note that the ARXaaS service must be available via a server or running locally, in order to be
utilizing the analyzation and anonymization functionality.

5.5.5 License
WebARXaaS is distributed under the MIT license. See the WebARXaaS License 106

106WebARXaaS License - https://github.com/oslomet-arx-as-a-service/WebARXaaS/blob/master/LICENSE

156

https://github.com/oslomet-arx-as-a-service/WebARXaaS/blob/master/LICENSE

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 158/219

5.6 Future development
NAV IT Data and Insight requested the solution to be maintainable, which presented several
challenges in regards to future development. As ARX was, and is still receiving updates and
new versions are to be released, the solution needs to retain compatibility with every new
version of ARX. For instance, new versions of ARX have the potential to introduce new
algorithms and strategies, which places a demand for continued developer support on every
product.

Each product has challenges unique to them as well, and are presented on a product by
product basis in the following subchapters.

5.6.1 ARXaaS
ARXaaS’ API and wrapper define what ARX functionality is available to consumers of
ARXaaS. When ARX is updated, ARXaaS will require maintenance in order to access and
utilize the new functionality. Furthermore, ARXaaS’ RESTful endpoints may need to be
updated so that the new functionality can be offered to API consumers. Following fulfillment,
the products consuming ARXaaS can be updated to call upon the new functionality and
present the resulting output. The team has mitigated this by documenting the REST API
thoroughly by writing unit tests on the ARX library to be run with the other ARXaaS tests to
discover regressions in new ARX versions.

Throughout the project, the team learned that one of the largest challenges for efficient
anonymization lied within the need for hierarchy diversity. Even though some datasets could
be effectively anonymized with reused hierarchies, most datasets would present the need for
at least a few unique tweaks for the proposed hierarchy to work. Unfortunately, customizing
hierarchies is costly in both time and effort. To deal with this, the team is proposing to
introduce automatic hierarchy generation powered by machine learning.

To promote more seamless integration with the client’s IT systems, a proposed future
challenge involves creating direct integrations with services at NAV. Specifically, introducing
opportunities for products outside the project to benefit from calling the ARXaaS API.

5.6.2 PyARXaaS
Python has a rich ecosystem of data science tooling. Future development areas for
PyARXaaS include building more integration to more of this ecosystem. Additionally the
following areas could be a focus for future development.

● Functionality for comparison of machine learning model performance on datasets
before and after anonymization

● Visualization of risk metrics contained in a risk profile
● Continuous improvement on the API design in collaboration with NAV IT data

scientists

157

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 159/219

5.6.3 WebARXaaS

Although WebARXaaS at this stage is fully functional with all the core features, there is still
room for future development on the platform.

The main functional feature which WebARXaaS is still lacking is the hierarchy builder, which
would allow the user to construct new hierarchies inside the browser window. Once this
feature is added, it will be possible to do the entire anonymization process inside of
WebARXaaS without the usage of any external tools. It has also been requested more
visualizations of the meta data displaying how well the data is anonymized. As well as the
development of an anonymization threshold which would make it easier for the user to tell
whether the data is sufficiently anonymized within the organizational standards. More
usability related features could involve additional helping text boxes, guiding the use through
the anonymization process.

● Hierarchy builder
● More visualizations
● Upload the image on Docker hub
● More user friendly help text which makes using best practices simpler for the user

5.7 Product Documentation Conclusion
Our project was started with the goal of providing data Scientists at NAV with state of the art
anonymization functionality within their python work environment. In order to satisfy this need
we have implemented a webservice with Java/Spring Boot together with a python package
which seamlessly provides a programmatic interface for anonymizing tabular data.
Furthermore we have also implemented a webclient in React.JS which was a stretch goal
from our customer.

Overall both the team and the customer are happy the solution deliver beyond the initial
product specification. NAV IT offered the entire team a work contracts for summer
employment, and the entire team accepted. NAV IT is planning additional features they wish
to be added to the core solution.

158

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 160/219

6 User manual
The purpose of this chapter is to give the reader a step-by-step guide on how to set up the
solution, and how to benefit from the products. Moderate programming knowledge is
advantageous in setting up the solution. It is recommended to read the product
documentation and the de-identification chapter before utilizing the products.

6.1 ARXaaS
The API documentation can be found here:
https://oslomet-arx-as-a-service.github.io/ARXaaS/#analyze-controller

The javadoc can be found here: https://javadoc.io/doc/no.oslomet/arxaas/0.3.2-RELEASE

6.1.1 Run ARXaaS
This segment covers step-by-step guidance on how to run ARXaaS with both HTTP and
HTTPS configuration. Docker offers the recommended environment for running ARXaaS.
Docker is introduced and explained in the product documentation, under 5.2.3.2.2 Docker.
Note that ARXaaS uses HTTP by default, reasoning can be found in the product
documentation, under 5.4.7 Security.

In order to run ARXaaS as a Docker container, make sure

1. Docker is installed
2. Docker Desktop is running
3. Internet is available
4. If the previous three options are fulfilled, a command-line interface can be opened

and the ARXaaS Docker image can be pulled from Docker Hub.

docker pull arxaas/aaas

5. Ready to move on to the following steps
a. 6.1.1.1 HTTP Configuration
b. 6.1.1.2 HTTPS Configuration.

6.1.1.1 HTTP Configuration
This is the default configuration for ARXaaS.
Before attempting to follow these steps, ensure that steps from 6.1.1 Run ARXaaS are
fulfilled.

6.1.1.1.1 Run ARXaaS from Docker image

Run the ARXaaS Docker image as a Docker container

docker run arxaas/aaas

159

https://oslomet-arx-as-a-service.github.io/ARXaaS/#analyze-controller
https://oslomet-arx-as-a-service.github.io/ARXaaS/#analyze-controller
https://javadoc.io/doc/no.oslomet/arxaas/0.3.2-RELEASE
https://javadoc.io/doc/no.oslomet/arxaas/0.3.2-RELEASE
https://www.docker.com/products/docker-hub

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 161/219

6.1.1.1.2 Run ARXaaS from .jar
Make sure that you have the latest version of java installed before going through these steps.

1. Download the latest version of the ARXaaS executable .jar from Maven Central. 107

2. Open the command-line interpreter and run the jar file

java -jar <path to jar>

6.1.1.2 HTTPS Configuration
Before attempting to follow these steps, ensure that steps from 6.1.1 Run ARXaaS are
fulfilled.

6.1.1.2.1 Recommended: Run ARXaaS with dynamic HTTPS parameters
This configuration applies when:

1. ARXaaS is being run as a Docker container
2. Keystore with SSL certificate(s) is passed from host machine to a mounted volume in

the Docker container. For keystore generation see 6.1.1.2.2 Generating and correctly
configuring a keystore for an ARXaaS project.

3. Spring Security HTTPS configuration is passed for locating said keystore upon
running the Docker container

docker run -d -v <absolute path to keystore on host machine>:<relative
path from root directory in docker container to destination> -p 8080:8080
<docker image name> --server.ssl.key-store-type=<keystore type >
--server.ssl.key-store=<relative path to keystore file from root
directory in docker container> --server.ssl.key-store-password=<keystore
password> --server.ssl.key-alias=<name/ alias of certificate in keystore>

NB : If your command application appears to stall after running this command, make sure to
look for prompts from Docker concerning credential input

Working example:

docker run -d -v
C:/Users/vijo/git/ARXaaS/arxaas-keystore.p12:/app/arxaas-keystore.p12 -p
8080:8080 arxaas/aaas:latest --server.ssl.key-store-type=PKCS12
--server.ssl.key-store=/app/arxaas-keystore.p12
--server.ssl.key-store-password=password
--server.ssl.key-alias=arxaas-https

6.1.1.2.2 Generating and correctly configuring a keystore for an ARXaaS project

107 Download ARXaaS executable jar from Maven Central - https://search.maven.org/search?q=a:arxaas

160

https://search.maven.org/search?q=a:arxaas

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 162/219

NB2 : Option 2 and 3 require a keystore file containing a certificate inside the Spring project
src/main/resources folder. Option 4 and 5 have the same requisites as option 2 and 3, plus
compilation to jar / Docker image.

1. Create keystore and certificate. You will be prompted to set a password for the
keystore

keytool -genkeypair -keystore <file name for new keystore, OPTIONAL:
preceed file name with absolute path to destination directory> -storetype
PKCS12 - alias <name for new certificate> -keyalg RSA -keysize 2048
-validity 360

2. OPTIONAL: Add more certificates to keystore

keytool -genkey - alias <name of new certificate> -keystore <path to
keystore> -storetype PKCS12 -keyalg RSA -storepass <keystore password>
-validity 730 -keysize 2048

NB3 : For a non-dynamic HTTPS configuration, the keystore file should be placed in the
Spring projects /src/main/resources folder. This is necessary for Spring to be able to find the
certificate on the classpath with the settings that we have suggested

3. OPTIONAL : Verify that your certificate(s) are correctly stored inside the keystore

keytool -list -v -keystore <keystore file>

6.1.1.2.3 Compile and run ARXaaS with pre-defined, non-dynamic SSL configuration
Option 2 requires a keystore file inside the Spring projects src/main/resources folder required

1. Configuration should look like the following, change values after '='s to match user specific
settings and uncomment the following settings from
/src/main/resources/application.properties.

server.ssl.key-store=classpath:<full keystore file name>
server.ssl.key-store-type=<keystore type (PKCS12 recommended)>
server.ssl.key-store-password=<keystore password>
server.ssl.key-alias=<name/ alias of certificate in keystore>

2. ARXaaS can now be run with HTTPS support enabled

● Docker:
1. Build image

161

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 163/219

docker build -t <image name> <path to Dockerfile>

2. Run container

docker run -p 8080:8080 <image name>

● Jar:
1. Compile the project

mvn clean install

2. Run jar (after compiling it should be located inside the ARXaaS project's

target folder)

java -jar <path to jar>

6.1.1.2.4 Running the server with dynamic HTTPS configuration for static HTTPS
keystore/certificate(s).
 The following options requires the keystore file to be inside the Spring projects
src/main/resources folder).

Option 3: ...from Spring project

mvn spring-boot:run -Dserver.ssl.key-store-type=<keystore type >
-Dserver.ssl.key-store=classpath:<keystore file name>
-Dserver.ssl.key-store-password=<keystore password>
-Dserver.ssl.key-alias=<name/ alias of certificate in keystore>

Option 4: ...from jar file

java -jar aaas-0.1.1-RELEASE.jar --server.ssl.key-store-type=<keystore
type > --server.ssl.key-store=classpath:<keystore file name>
--server.ssl.key-store-password=<keystore password>
--server.ssl.key-alias=<name/ alias of certificate in keystore>

Option 5: ...from Docker image

docker run -p 8080:8080 -d arxaas/aaas
--server.ssl.key-store-type=<keystore type >
--server.ssl.key-store=classpath:<keystore file name>
--server.ssl.key-store-password=<keystore password>
--server.ssl.key-alias=<name/ alias of certificate in keystore>

162

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 164/219

6.2 PyARXaaS client

6.2.1 Introduction
This document contains a step-by-step guide on how to start and use the Python Client. The
python client was designed with the expectation that it would be used in Jupyter notebook,
but it can be used on different IDE.

The team uses Sphinx to generate the PyARXaaS user guides, tutorials and API
documentation. Published and hosted on the readthedocs.org 108

● The API documentation can be found here: https://pyaaas.readthedocs.io/en/latest/

Figure 71 - Image of PyARXaaS documentation page using Sphinx

The user can access the different documentation by using the menu on the left side of the
page.

6.2.2 Installing PyARXaaS Client
● PyAaas requires python 3.6 and up. Python download
● PyAaaS is available on PyPI PyPI link
● The source code can be found here: Github

108 Read the Docs - https://readthedocs.org/

163

https://pyaaas.readthedocs.io/en/latest/
https://pyaaas.readthedocs.io/en/latest/
https://pyaaas.readthedocs.io/en/latest/
https://pyaaas.readthedocs.io/en/latest/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.org/project/PyAaaS/
https://pypi.org/project/PyAaaS/
https://github.com/oslomet-arx-as-a-service/PyAaaS.git
https://readthedocs.org/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 165/219

6.2.2.1 Pip install
Open the command-line interface and write:

pip install pyarxaas

6.2.2.2 Setup virtual environment
This is an optional step on how start a virtual environment to run PyARXaaS client on.

6.2.2.2.1 Mac/Linux

1. Create a new directory

mkdir pyarxaas-project

2. Change current directory to ‘pyaaas-project’

cd pyarxaas-project

3. Create a virtual environment

python3 -m venv c:\path\to\myenv

4. activate the virtual environment

source venv/bin/activate

6.2.2.2.2 Windows

1. Create a new directory

mkdir pyarxaas-project

2. Change current directory to ‘pyaaas-project’

cd .\pyarxaas-project

164

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 166/219

3. Create a virtual environment

python -m venv c:\path\to\myenv

4. activate the virtual environment

.\Scripts\activate

6.2.3 Quick start guide

This page gives a introduction in how to get started with PyAaaS
First, make sure that:

● PyARXaaS is installed
● PyARXaaS is up-to-date
● You have a tabular dataset to use
● You have a running ARXaaS instance to connect to.

○ Instructions on how to run ARXaaS can be found here: ARXaaS
● If you are going to anonymize a dataset, you need to have the required hierarchies.

See anonymize section for more information

6.2.3.1 Analyze the risk of a dataset

Analyze the risk of a dataset using PyAaaS is very simple.

1. Begin by importing the dataset class and pandas which we are going to use to create
a dataset .

from pyarxaas import dataset
import pandas as pd

Then we create a dataset from a local csv file.

Note

The dataset in this example contains the columns/fields id, name, gender.

dataframe = pd.read_csv("data.csv" , sep= ";")
create dataset
dataset = dataset.from_pandas(dataframe)

The dataset class encapsulates the raw data, attribute types of the dataset fields and
hierarchies.

165

https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/README.md
https://github.com/oslomet-arx-as-a-service/ARXaaS/blob/master/README.md
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 167/219

2. Then we set the Attribute Type for the dataset fields.

 # import the attribute_type module
 from pyarxaas import AttributeType

set attribute type
dataset.set_attribute_type(AttributeType.QUASIIDENTIFYING, 'name' , 'gender')
dataset.set_attribute_type(AttributeType.IDENTIFYING, 'id')

3. To make a call to the ARXaaS instance we need to make a instance of the ARXaaS
class.

The ARXaaSConnector class needs a url to the ARXaaS instance. In this example
we have ARXaaS running locally.

import the aaas module
from pyarxaas import ARXaaS

establishing a connection to the ARXaaS service using the URL
aaas = ARXaaS("http://localhost:8080")

4. After the ARXaaS object is created we can use it to call the ARXaaS instance to

make a RiskProfile for our dataset.

get the risk profile of the dataset
risk_profile = aaas.risk_profile(dataset)

The RiskProfile contains two properties; re-identification risks and distributed risks.
The two properties contains the different risks and the distribution of risks for the
dataset .

get risk metrics as a dictionary
re_indentifiation_risk = risk_profile.re_identification_risk
distribution_of_risk = risk_profile.distribution_of_risk

get risk metrics as pandas.DataFrame
re_i_risk_df = risk_profile.distribution_of_risk_dataframe()
dist_risk_df = risk_profile.distribution_of_risk_dataframe()

166

https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type
https://pyaaas.readthedocs.io/en/latest/api/arxaas.html#arxaas
https://pyaaas.readthedocs.io/en/latest/api/arxaas.html#arxaas
https://pyaaas.readthedocs.io/en/latest/api/risk_profile.html#risk-profile
https://pyaaas.readthedocs.io/en/latest/api/risk_profile.html#risk-profile
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 168/219

6.2.3.2 Anonymize a dataset
Anonymizing a dataset using PyARXaaS.

1. Begin by importing the dataset class and pandas which we are going to use to create
a dataset

from pyarxaas import dataset
import pandas as pd

2. Same as when in analyze we set the attribute type for the dataset fields:

 # import the attribute_type module
 from pyarxaas import AttributeType

set attribute type
dataset.set_attributes(AttributeType.QUASIIDENTIFYING, 'name' , 'gender')
dataset.set_attributes(AttributeType.IDENTIFYING, 'id')

3. In addition to setting attribute types we need to provide Transformation Models known

as hierarchies for the dataset fields/columns with type
AttributeType.QUASIIDENTIFYING Hierarchies can be added as
pandas.DataFrame objects:

importing the hierarchies from a local csv file. Specify the file path as the first
parameter
id_hierarchy = pd.read_csv("id_hierarchy.csv" , header= None)
name_hierarchy = pd.read_csv("name_hierarchy.csv" , header= None)

setting the imported csv file. Specify the column name as the first parameter, and the
hierarchy as the second parameter
dataset.set_hierarchy('id' , id_hierarchy)
dataset.set_hierarchy('name' , name_hierarchy)

4. When anonymizing we need to supply a Privacy Model for ARXaaS to run on the

dataset. You can read more about the models here ARX Privacy Models

importing the privacy_models module
from pyarxaas.privacy_models import KAnonymity

creating a privacy_models object
kanon = KAnonymity(4)

5. To make a call to the ARXaaS instance we need to make a instance of the AaaS
class. The AaaS connector class needs a url to the ARXaaS instance. In this
example we have ARXaaS running locally.

import the aaas module
from pyarxaas import ARXaaS

167

https://pyaaas.readthedocs.io/en/latest/api/privacy_model.html#privacy-model
https://arx.deidentifier.org/overview/privacy-criteria/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 169/219

establishing a connection to the ARXaaS service using the URL
aaas = ARXaaS("http://localhost:8080")

6. After the ARXaaS object is created we can use it to call the ARXaaS instance. Back if

the anonymization is successful we receive an AnonymizeResult

specify the dataset as the first parameter, and privacy model list as the second
parameter
anonymize_result = aaas.anonymize(dataset, [kanon])

AnonymizeResult contains the new dataset , the RiskProfile for the new , the dataset,
the anonymization status for the dataset and AnonymizeMetrics which contains
metrics regarding the anonymization performed on the dataset.

get the new dataset
anonymized_dataset = anonymize_result.dataset
anon_dataframe = anonymized_dataset.to_dataframe()

get the risk profile for the new dataset
anon_risk_profile = anonymize_result.risk_profile

get risk metrics as a dictionary
re_indentifiation_risk = anon_risk_profile.re_identification_risk
distribution_of_risk = anon_risk_profile.distribution_of_risk

get risk metrics as pandas.DataFrame
re_i_risk_df = anon_risk_profile.distribution_of_risk_dataframe()
dist_risk_df = anon_risk_profile.distribution_of_risk_dataframe()

get the anonymization metrics
anon_metrics = anonymize_result.anonymization_metrics

168

https://pyaaas.readthedocs.io/en/latest/api/arxaas.html#arxaas
https://pyaaas.readthedocs.io/en/latest/api/anonymize_result.html#anonymize-result
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/risk_profile.html#risk-profile
https://pyaaas.readthedocs.io/en/latest/api/anonymization_metrics.html#anonymization-metrics

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 170/219

6.2.4 Connecting to and using ARXaaS
Calls to ARXaaS is made through the ARXaaS class. ARXaaS implements methods for the
following functionality:

● Anonymize a Dataset object
● Analyze re-identification risk for a Dataset object
● Create generalization hierarchies (See chapter: 6.2.7 Creating Hierarchies)

6.2.4.1 Creating an instance
When creating an instance of the ARXaaS class you need to pass a full url to the service
running.

Example:

arxaas = ARXaaS("https://localhost:8080")

6.2.4.2 Risk Profile
Re-identification risk for prosecutor, journalist and marketer attack models can be obtained
using the ARXaaS risk_profile method. The method takes a dataset object and returns a
Risk Profile . See chapter 6.2.5 Using the dataset class, for more on the dataset class. More
in depth information on re-identification risk ARX | risk analysis .

Example:

risk_profile = arxaas.risk_profile(dataset)

RiskProfile contains different properties containing analytics on the dataset re-identification
risk. Most important is the re-identification risk property.

create risk profile ...
risks = risk_profile.re_identification_risk

The property contains a mapping of risk => value. What is a acceptable risk depends entirely
on the context of the dataset.

6.2.4.3 Anonymization
Anonymizing a dataset is as simple as passing a dataset containing the necessary
hierarchies, a sequence of Privacy Model to use and optionally a suppression limit to the
anonymize() method. The method, if successful returns a AnonymizeResult object containing
the new dataset.

Example:

kanon = KAnonymity(2)

169

https://github.com/oslomet-arx-as-a-service/ARXaaS
https://github.com/oslomet-arx-as-a-service/ARXaaS
https://pyaaas.readthedocs.io/en/latest/api/arxaas.html#arxaas
https://pyaaas.readthedocs.io/en/latest/api/arxaas.html#arxaas
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/risk_profile.html#risk-profile
https://pyaaas.readthedocs.io/en/latest/api/risk_profile.html#risk-profile
https://arx.deidentifier.org/anonymization-tool/risk-analysis
https://arx.deidentifier.org/anonymization-tool/risk-analysis
https://pyaaas.readthedocs.io/en/latest/api/privacy_model.html#privacy-model
https://pyaaas.readthedocs.io/en/latest/api/privacy_model.html#privacy-model
https://pyaaas.readthedocs.io/en/latest/api/anonymize_result.html#anonymize-result
https://pyaaas.readthedocs.io/en/latest/api/anonymize_result.html#anonymize-result

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 171/219

in this example the dataset has a disease field
ldiv = LDiversityDistinct(2 , "disease")
anonymize_result = arxaas.anonymize(dataset, [kanon, ldiv], 0.2)
anonymized_dataset = anonymize_result.dataset

6.2.4.4 Hierarchy Generation
Generalization hierarchies are a important part of anonymization. ARXaaS contains a
hierarchy() method. It takes a configured Hierarchy Builders object and a dataset column
represented as a common Python list. It returns a 2D list structure containing a new
hierarchy.

Example making a redaction hierarchy:

redaction_builder = RedactionHierarchyBuilder()
zipcodes = [47677 , 47602 , 47678 , 47905 , 47909 , 47906 , 47605 , 47673 , 47607]
zipcode_hierarchy = arxaas.hierarchy(redaction_builder, zipcodes)

6.2.5 Using the dataset class
The dataset class represents a tabular dataset containing continuous or categorical
attributes. Additionally each attribute has a Attribute Type describing the re-identification risk
and sensitivity associated with the attribute.
In the case where a attribute is Quasi-identifying a hierarchy object can be added.

A Dataset contains:

● Tabular data
● AttributeType for the data fields/attributes 109

● (optional) hierarchies for the quasi-identifying attributes

6.2.6 Construction
A dataset object can be made from a pandas, DataFrame or a python dict using the
constructor class methods.

From Python dictionary
data_dict = { "id" : [1 , 2 , 3], "name" : ["Mike" , "Max" , "Larry"]}
new_dataset = dataset.from_dict(data_dict)

From pandas.DataFrame
dataframe = pd.read_csv("data.csv" , sep= ";")
new_dataset = dataset.from_pandas(dataframe)

109 Python Docs for Attribute Type - https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type

170

https://pyaaas.readthedocs.io/en/latest/api/hierarchy/hierarchy.html#hierarchy-builders
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/hierarchy.html#hierarchy-builders
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type
https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type
https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 172/219

6.2.6.1 Dataset type conversion
The Dataset class possesses convenient methods for converting the contained tabular data
to other data type, e.g. pandas dataframe.

To pandas.DataFrame Note: When you create a pandas DataFrame, from a Dataset only 110

the tabular data is included. The Attribute Type information and hierarchies are lost.

data_dict = { "id" : [1 , 2 , 3], "name" : ["Mike" , "Max" , "Larry"]}
new_dataset = dataset.from_dict(data_dict)
dataframe = new_dataset.to_dataframe()
id name
#0 1 Mike
#1 2 Max
#2 3 Larry

6.2.6.2 Mutation

6.2.6.2.1 Attribute type
The default Attribute Type for attributes in a dataset is AttributeType.QUASIIDENTIFYING.
The default is set to quasi-identifying so that new users will get an error that is easily
understandable. You can change the type of a attribute with the set_attribute_type() method.:

from pyarxaas import AttributeType
new_dataset.set_attribute_type(AttributeType.IDENTIFYING, "id")

Above we have changed the Attribute Type of the dataset to Attribute Type.IDENTIFYING.
This signals that the id attribute is a directly identifying attribute in this dataset . The id will be
treated as such by ARXaaS if anonymization is applied to the dataset.
Read more about the different Attribute types here: Attribute Type

It is possible to pass n attributes following the Attribute Type parameter to set the attribute
type to all the attribute.

Here id and name are marked as insensitive attributes
new_dataset.set_attribute_type(AttributeType.INSENSITIVE, "id" , "name")

6.2.6.2.2 Hierarchies
Hierarchy also referred to as generalization hierarchies represented either as
pandas.DataFrames or a regular Python list, are the strategies ARXaaS will use when
attempting to anonymize the dataset. Read more about them in chapter 6.2.7 Creating
Hierarchies.

110 Python Docs for dataset - https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset

171

https://pyaaas.readthedocs.io/en/latest/api/attribute_type.html#attribute-type
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 173/219

Setting a hierarchy on a dataset attribute
id_hierarchy = [["1" , "*"], ["2" , "*"], ["3" , "*"]]
dataset.set_hierarchy("id" , id_hierarchy)

You can also set several hierarchies in one call with the .set_hierarchies(hierarchies)
method.

id_hierarchy = [["1" , "*"], ["2" , "*"], ["3" , "*"]]
job_hierarchy = [["plumber" , "manual-labour" , "*"],
 ["hairdresser" , "service-industry" , "*"]]
hierarchies = { "id" : id_hierarchy, "job" : job_hierarchy}
dataset.set_hierarchies(hierarchies)

6.2.7 Creating Hierarchies
After creating a dataset from some data source, you can set the hierarchies ARXaaS will use
when attempting to anonymize the dataset. ARXaaS currently only support value
generalization hierarchies. Read more about different transformation models in ARX
documentation .

6.2.7.1 Hierarchy Building
ARXaaS offers an endpoint to use the ARX library hierarchy generation functionality.
PyARXaaS implements abstractions to make this process as easy and intuitive as possible.
Hierarchy generation that ARX offers falls into four different categories:

● Redaction based hierarchies
● Interval based hierarchies
● Order based hierarchies
● Date based hierarchies

ARXaaS and PyARXaaS currently only support Redaction, Interval and Order based
hierarchy generation. In PyARXaaS all the hierarchy builders are importable from the
pyarxaas.hierarchy package

6.2.7.2 Redaction based hierarchies
Redaction based hierarchies are hierarchies suited best for categorical but numeric values.
Attributes such as zipcodes are a prime candidate. The hierarchy strategy is to delete one
number at a time from the attribute column until the privacy model criteria is meet. The
hierarchy builder can be configured to start deleting from either direction, but will default to
RIGHT_TO_LEFT. Redaction based hierarchies are the hierarchies with the least effort to
create.

172

https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://pyaaas.readthedocs.io/en/latest/api/dataset.html#dataset
https://arx.deidentifier.org/overview/transformation-models
https://arx.deidentifier.org/overview/transformation-models
https://arx.deidentifier.org/overview/transformation-models

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 174/219

Example :
In this example we will use a list of zip codes representing a column from a hypothetical
dataset. The list could be generated from any source. Hierarchy building works on list of
strings or numbers.

zipcodes = [47677 , 47602 , 47678 , 47905 , 47909 , 47906 , 47605 , 47673 , 47607]

We will then import the redaction hierarchy builder class

from pyarxaas.hierarchy import RedactionHierarchyBuilder

The RedactionHierarchyBuilder class is a simple class and all configuration is optional.
When instantiating the class the user can pass in parameters to configure how the resulting
hierarchy should be built. See RedactionHierarchyBuilder for more on the parameters.

6.2.7.2.1 Creating a simple redaction hierarchy

Create builder
redaction_builder = RedactionHierarchyBuilder()

The builder defines a template to build the resulting hierarchy. Now that there is a list of a
dataset field, and a builder to create a hierarchy. The client can connect to ARXaaS to make
the hierarchy.

from pyarxaas import ARXaaS
establishing a connection to the ARXaaS service using a url, in this case
ARXaaS is running locally on port 8080
arxaas = ARXaaS("http://localhost:8080")

With the connection to ARXaaS established we can create the hierarchy.

pass builder and column to arxaas
redaction_hierarchy = arxaas.hierarchy(redaction_based, zipcodes)

The resulting hierarchy looks like this:

[['47677' , '4767*' , '476**' , '47***' , '4****' , '*****'],
['47602' , '4760*' , '476**' , '47***' , '4****' , '*****'],
['47678' , '4767*' , '476**' , '47***' , '4****' , '*****'],
['47905' , '4790*' , '476**' , '47***' , '4****' , '*****'],
['47909' , '4790*' , '476**' , '47***' , '4****' , '*****'],
['47906' , '4790*' , '476**' , '47***' , '4****' , '*****'],
['47605' , '4760*' , '476**' , '47***' , '4****' , '*****'],
['47673' , '4767*' , '476**' , '47***' , '4****' , '*****'],
['47607' , '4760*' , '476**' , '47***' , '4****' , '*****']]

173

https://pyaaas.readthedocs.io/en/latest/api/hierarchy/redaction_hierarchy_builder.html#redaction-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/redaction_hierarchy_builder.html#redaction-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/redaction_hierarchy_builder.html#redaction-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/redaction_hierarchy_builder.html#redaction-hierarchy-builder

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 175/219

6.2.7.3 Interval based hierarchies
Interval based hierarchies are well suited for continuous numeric values. Attributes such as
age, income or credit score are typically generalized with a interval based hierarchy. The
Interval based hierarchy builder requires the user to specify intervals in which to generalize
values in the attribute. Optionally these intervals can be labeled. In addition intervals can be
grouped upwards using levels and groups to create a deeper hierarchy.

Example In this example we will use a list of ages representing a column from a hypothetical
dataset.

ages = [29 , 22 , 27 , 43 , 52 , 47 , 30 , 36 , 32]

1. We import the IntervalHierarchyBuilder class from the hierarchy package.

from pyarxaas.hierarchy import IntervalHierarchyBuilder

2. Then we instantiate the builder. IntervalHierarchyBuilder takes no constructor
arguments.

interval_based = IntervalHierarchyBuilder()

3. Add intervals to the builder. The intervals must be continuous(without gaps)

interval_based.add_interval(0 , 18 , "child")
interval_based.add_interval(18 , 30 , "young-adult")
interval_based.add_interval(30 , 60 , "adult")
interval_based.add_interval(60 , 120 , "old")

Optionally we add groupings. Groupings are added to a specific level and are order
based according to the interval order.

interval_based.level(0)\
 .add_group(2 , "young")\
 .add_group(2 , "adult")

4. Call the ARXaaS service to create the hierarchy

interval_hierarchy = arxaas.hierarchy(interval_based, ages)

The hierarchy looks like this:

[['29' , 'young-adult' , 'young' , '*'],
 ['22' , 'young-adult' , 'young' , '*'],
 ['27' , 'young-adult' , 'young' , '*'],
 ['43' , 'adult' , 'adult' , '*'],
 ['52' , 'adult' , 'adult' , '*'],

174

https://pyaaas.readthedocs.io/en/latest/api/hierarchy/interval_hierarchy_builder.html#interval-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/interval_hierarchy_builder.html#interval-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/interval_hierarchy_builder.html#interval-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/interval_hierarchy_builder.html#interval-hierarchy-builder

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 176/219

 ['47' , 'adult' , 'adult' , '*'],
 ['30' , 'adult' , 'adult' , '*'],
 ['36' , 'adult' , 'adult' , '*'],
 ['32' , 'adult' , 'adult' , '*']]

6.2.7.4 Order based hierarchy
OrderHierarchyBuilder are suited for categorical attributes. Attributes such as country,
education level and employment status.

Order based hierarchies are built using groupings with optional labeling. This means that
grouping is completed on the list of values as it is. This means the list has to be sorted
according to ordering before a hierarchy can be made. Order based hierarchies are usually
very reusable depending on the domain.

In this example we will use a column of diseases:

diseases = ['bronchitis' ,
 'flu' ,
 'gastric ulcer' ,
 'gastritis' ,
 'pneumonia' ,
 'stomach cancer']

In this case we will sort the diseases according to the disease location; lung-disease or
stomach-disease . But this sorting can be as complex as the user wants.

unique_diseases[2], unique_diseases[4] = unique_diseases[4], unique_diseases[2]
unique_diseases

#['bronchitis',
'flu',
'pneumonia',
'gastritis',
'gastric ulcer',
'stomach cancer']

1. Import OrderHierarchyBuilder

from pyarxaas.hierarchy import OrderHierarchyBuilder

2. Create instance to use.

order_based = OrderHierarchyBuilder()

Group the values. Note that the groups are applied to the values as they are ordered
in the list. Adding labels are optional, if labels are not set the resulting field will be a
concatenation of the values included in the group.

175

https://pyaaas.readthedocs.io/en/latest/api/hierarchy/order_hierarchy_builder.html#order-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/order_hierarchy_builder.html#order-hierarchy-builder
https://pyaaas.readthedocs.io/en/latest/api/hierarchy/order_hierarchy_builder.html#order-hierarchy-builder

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 177/219

order_based.level(0)\
 .add_group(3 , "lung-related")\
 .add_group(3 , "stomach-related")

3. Call the ARXaaS service to create the hierarchy

order_hierarchy = arxaas.hierarchy(order_based, diseases)

The resulting hierarchy looks like this:

[['bronchitis' , 'lung-related' , '*'],
 ['flu' , 'lung-related' , '*'],
 ['pneumonia' , 'lung-related' , '*'],
 ['gastritis' , 'stomach-related' , '*'],
 ['gastric ulcer' , 'stomach-related' , '*'],
 ['stomach cancer' , 'stomach-related' , '*']]

6.3 WebARXaaS client
The WebARXaaS client files can be found and downloaded here:
https://github.com/oslomet-arx-as-a-service/WebARXaaS

6.3.1 Starting the application

In order to start the application locally you must have a local installation of NodeJS newer
than 10.15 and the packet manager npm installed.

1. Download the WebARXaaS client
2. Make sure the current directory of your terminal is the root directory of WebARXaaS .
3. Run npm install in your terminal in order to download all the dependencies

specified in package.json.
4. Run npm start in your terminal. This will start up an instance of the application

running locally on port 3000.
5. You can now access the website locally by navigating to http://localhost:3000/ with

your web browser.

6.3.2 Deploying to production
This application is built using the node create-react-app package. In order to generate files
ready to be deployed to production you must first build the application.

1. Download the WebARXaaS client
2. Run the command npm install inside the project directory, in order to ensure you

got the necessary dependencies downloaded locally.

176

https://github.com/oslomet-arx-as-a-service/WebARXaaS
https://github.com/oslomet-arx-as-a-service/WebARXaaS
http://localhost:3000/
http://localhost:3000/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 178/219

3. Run the command npm build , this command is an alias for react- scripts build
and will generate production ready files into the /build directory.

4. Copy the content of the /build into the public directory of a web server. To do this you
can use the nginx docker image by using the docker image in the root directory of the
project.

5. Run the command docker build --tag=webarxaas . from the root directory of
the application, to make docker start the building of the docker image shown below.

6. For starting the built docker image which was built on the previous step, run the
command docker run -p 80 : 8080 webarxaas . This will start the docker container
running the application, making the server start running on port 80.

7. Use your browser to navigate to the website at http://localhost:80 and check that the
website is up and running

FROM nginx
COPY build /usr/share/nginx/html
COPY nginx.conf /etc/nginx/conf.d/default.conf

6.3.3 Configuration
By default the application connects to the URL defined inside web-aaas\src\App.js. The url
should be changed if your organization is running your own ARXaaS service. It is also
possible to define the service url manually on the website, but this is mainly intended for
testing purposes as the entered URL currently does not get saved.

const [endpoint, setEndpoint] = useState('http://35.228.21.181:8080')

6.3.4 Analyzing
Steps on how to analyze a dataset against re-identification risk.

1. Import the dataset by clicking on the “browse” button

Figure 72 - Importing of dataset to analyze

2. Select the csv file containing a dataset to be analyzed.

177

http://localhost/
http://localhost/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 179/219

3. After selecting a dataset, an auto generated section containing the dataset headers
will appear below.

Figure 73 - Setting attribute type of dataset to analyze

a. Select the attribute type of each dataset headers by clicking on the drop down

menu(where the red arrow is pointing).

 NB When analyzing a dataset, there is no need to import hierarchies.

4. After selecting the attribute types for the dataset headers. Click the “analyze” button.

Figure 74 - Analyze the dataset

178

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 180/219

6.3.5 Anonymizing
Steps on how to anonymize a dataset against re-identification risk.

1. Import the dataset by clicking on the “browse” button(where the red arrow is pointing).

Figure 75 - Importing of dataset to anonymize

2. Select the csv file containing a dataset to be anonymized.
3. After selecting a dataset, an auto generated section containing the dataset headers

will appear below.

Figure 76 - Setting attribute type and importing transformation model

a. Import transformation model csv file by clicking on where the yellow arrow is

pointing.
b. Select the attribute type of each dataset headers by clicking on where the red

arrow is pointing.

NB When anonymizing a dataset, a quasi-identifying attribute type needs a
hierarchy/transformation model.

4. Select a privacy model to anonymize the dataset

179

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 181/219

Figure 77 - Setting the privacy model to anonymize the dataset

a. By clicking where the red arrow is pointing a drop down menu will show the
available privacy models.

b. Select a privacy model to anonymize the dataset.
c. After selecting a privacy model, type the desired privacy model configuration

in the input fields.
● Read more about the Privacy model: here

d. click the “add privacy model” button(where the green arrow is pointing) to

apply the setting.
e. Added privacy model can be removed by clicking the “remove” button(where

the yellow arrow is pointing).

5. Optionally a suppression limit can be added to anonymize the dataset.

180

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 182/219

Figure 78 - Setting the suppression limit for the dataset

a. Specify a suppression limit to be used in the limit input field, and click on the
“add suppression limit” button(where the red arrow is pointing) to apply the
setting.

b. A suppression limit can be removed by clicking on the “remove” button(where
the yellow arrow is pointing).

6. Click the anonymize button to start anonymizing the dataset against re-identification
risk.

181

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 183/219

Figure 79 - Anonymizing the dataset

182

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 184/219

6.3.6 Privacy model input field description
Descriptions of the different input fields for each privacy model.

6.3.6.1 K-Anonymity
Anonymizing with K-anonymity.

Figure 80 - K- Anonymity input field

● K = K-anonymity generalization value when anonymizing the dataset.

○ K must have a value of 2 or higher to take effect.

Read more about K-Anonymity on chapter 2.5.1 K-Anonymity .

6.3.6.2 L-Diversity
Anonymizing with L-Diversity.

Read more about L-Diversity on chapter 2.5.2 L-Diversity .

6.3.6.2.1 Using non-recursive variants of L-diversity

When using Distinct, Grass-Berger-entropy, and Shannon-entropy only two input fields are
available.

183

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 185/219

Figure 81 - Input fields for Distinct, Grass-Berger- and Shannon-Entropy

● L = Value when anonymizing the dataset, based on a column or dataset field that has

a sensitive attribute.
○ L must have a value of 2 or higher to take effect. (Red arrow)

● Field = Column or dataset field that has a sensitive attribute type. (Yellow arrow)

6.3.6.2.2 Using Recursive variant of L-diversity

When using the Recursive variant of L-diversity a three input fields are available.

Figure 82 - Input fields for Recursive L-Diversity

184

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 186/219

● L = Value of L to anonymize the dataset based on a column or dataset field that has a
sensitive attribute.

○ L must have a value of 2 or higher to take effect. (Red arrow)
● Field = Column or dataset field that has a sensitive attribute type. (Yellow arrow)
● C = Value of C to anonymize the dataset based on a column or dataset field that has

a sensitive attribute.
○ C must have a value of 0.00001 or higher to take effect. (Green arrow)

6.3.6.3 T-Closeness
Anonymizing with T-closeness. The Ordered and Equal Distance variant of T-closeness
takes two input fields

Figure 83 - Input fields for Order and Equal Distance T-Closeness

● T = Value of T to anonymize the dataset based on a column or dataset field that has

a sensitive attribute.
○ T must have a value between 0.000001 to 1.0

● Field = Column or dataset field that has a sensitive attribute type.

Read more about T-Closeness on chapter 2.5.3 T-Closeness .

185

http://softwaretestingfundamentals.com/acceptance-testing/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 187/219

7 Appendix

7.1 Terminology
Abstract base class - are classes that contain one or more abstract methods. An abstract
method is a method that is declared, but contains no implementation. Abstract classes may
not be instantiated, and require subclasses to provide implementations for the abstract
methods.
Agile - Agile teams have a specific approach to software development, especially in regards
to self-organizing and cross-functional teams and their customer(s)/end user(s).
Attribute - column of values in a dataset representing a set of attributes.

Attribute Type - the disclosure risks from which a dataset is to be protected.

ARX - is a comprehensive open source software for anonymizing sensitive personal data.
Certificate Authority (CA) - A Certificate Authority is an entity that issues digital
certificates.

Code Climate - engineering process insights and automated code review for GitHub and
GitHub Enterprise help you ship better software, faster.

Container orchestration platform - cloud orchestration involves the end-to-end automation
and coordination of multiple processes to deliver a desired service to its clients. Typically
used to provision, deploy or start servers; acquire and assign storage capacity; manage
networking; create VMs; and gain access to specific software on cloud services.

Continuous Integration (CI) - the practice of merging all developer working copies to a
shared mainline several times a day.

Continuous Delivery (CD) - Continuous delivery is a series of practices designed to ensure
that code can be rapidly and safely deployed to production by delivering every change to a
production-like environment and ensuring business applications and services function as
expected through rigorous automated testing.
Control-flow graph (CFG) - In computer science, CFG is a graphical display of how many
paths that can possibly be traversed during a program’s runtime.

CRUD application - The acronym CRUD refers to all of the major functions that are
implemented in relational database applications. Create, read, update, and delete.

Data-driven - The progress of a data-driven activity is influenced by data, rather than
intuition or personal experience.

Data Package - Data Package is a simple container format used to describe and package a
collection of data.

Data pipeline - A data pipeline automates the moving and transformation of data. In the
case of this project, it is a controlled sequence of actions, that is performed on data,
triggered by a specific event.

186

https://en.wikipedia.org/wiki/Trunk_(software)

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 188/219

Domain Driven Design - is an approach to developing software for complex needs by
deeply connecting the implementation to an evolving model of the core business concepts. It
aims to ease the creation of complex applications by connecting the related pieces of the
software into an ever-evolving model.

Digital Transformation - the integration of digital technology into all areas of a business
resulting in fundamental changes to how businesses operate and how they deliver value to
customers.
Equivalence class - Records in a dataset that have the same values on the
quasi-identifiers .
Factory method - factory method pattern is a creational pattern that uses factory methods to
deal with the problem of creating objects without having to specify the exact class of the
object that will be created.

GitHub - a git repository hosting platform. Commonly used for open source software.
HTTP - Hypertext Transfer Protocol
HTTPS - Hypertext Transfer Protocol Secure

Jacoco - is a free Java code coverage library distributed under the Eclipse Public License.

Java - is a high-power, stable and highly trusted programing language. Commonly used in
backend application with a requirement for stability.

Javascript - an object-oriented computer programming language commonly used to create
interactive effects within web browsers.

JSON - is an open-standard file format that uses human-readable text to transmit data
objects consisting of attribute–value pairs and array data types.

Jupyter Notebook - Project Jupyter exists to develop open source software,
open-standards, and services for interactive computing across dozens of programming
languages.

Kubernetes - is an open source container orchestration system for automating application
deployment, scaling, and management.
K-anonymity, L-diversity, T-closeness - Privacy Models for protecting privacy.
Explanations sourced in the Reference List.
Masking - The process of removing a variable or replacing it with pseudonymous or
encrypted information.

MIT Licence - The MIT License is a permissive free software license originating at the
Massachusetts Institute of Technology.

Mocking - (testing) Mocking is make a replica or imitation of something. In testing of
programs mocking is creating objects that simulate the behavior of real objects. The goal is
to use mocks to help test parts of a program in isolation.

NAIS - is an application platform built to increase development speed by providing our
developers at NAV with the best possible tools to develop and run their applications.

open source - is a term denoting that a product includes permission to use its source code,
design documents, or content.

187

https://www.nav.no/

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 189/219

Pandas - is an open source , BSD-licensed library providing high-performance, easy-to-use
data structures and data analysis tools for the Python programming language.

Pandas Dataframe - A one-dimensional labeled array capable of holding any data type with
axis labels or index.
Personal Data - Personal data is any information which is related to an identified or
identifiable natural person.
PII - PII or Personally Identifiable Information is any data that can be used to clearly identify
an individual.

Privacy Model - Privacy Models are specific algorithms applied to a dataset to protect the
dataset from an identification risk vector.

Product Backlog - The list of items, ordered by priority (by the Product Owner), that need to
be done within the project.

Product Owner - The individual that is responsible for maintaining the Product Backlog and
maximizing the value of the solution.

Project Stakeholders - Individual, group or corporation that may be affected by the outcome
of this project. In this case NAV IT, OsloMET, and the development team.

Python - Python is a powerful, high-level language. Used in everything from web apps to
data-science/machine learning.

Pull Request - Pull requests let you tell others about changes you've pushed to a GitHub
repository. Once a pull request is sent, involved parties can review the changes, discuss
potential modifications, and even push follow-up commits if necessary.

Re-identification risk - The risk of an individual being identified from a row of data in a
dataset.

Test coverage - Metric on the percentage of code covered by tests.

Tabular dataset - a data consisting of or presented in columns or tables.

Transformation Model - Transformation Models are strategies that describes how a specific
column in the dataset should lose data as the anonymization tries to achieve the required
anonymization level specified by the Privacy Model .

Travis CI - is a hosted, distributed continuous integration service used to build and test
software projects hosted at GitHub.

Scrum - is an agile framework for managing work, with an emphasis on software
development. It is designed for teams of three to nine members, who break their work into
actions that can be completed within timeboxed iterations, called "sprints", no longer than
one month and most commonly two weeks, then track progress and re-plan in 15-minute
stand-up meetings , called daily scrums.

Scrum Master - The Scrum Master is responsible for promoting and supporting Scrum.

Spring - is an open source , high-power, Java application framework for business
applications.

188

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 190/219

Stand-up meetings - Attendees of a stand-up meeting (or simply "stand-up"), participate in a
meeting while standing. The intention is to keep the meetings short because of the discomfort of
standing.

Unique identifier - Unique identifiers are pieces of information that provide sufficient data as to
independently identifying a person.

Quasi identifier - Quasi identifiers are pieces of information that can be combined with other
quasi-identifiers to create a unique identifier .

189

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 191/219

7.2 Product Specification

Product Specification

Anonymization as a
Service

08.02.2019

Group 8

Members Student Number Email

Jeremiah Augie Salita Uy s181369 jeremiah.uy@outlook.com

Lord André Groseth s181365 andregroseth@outlook.com

Sondre Halvorsen s305349 sondre.hal@gmail.com

Julian Sagen s315584 julian.sagen@gmail.com

Viktor Vartdal Johansen s315615 viktor.v.johansen@hotmail.com

190

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 192/219

Table of Content
1. Presentation

Client
About the Client

Person of Contact
Client Stakeholders
Supervisor from OsloMET

2. Project Background

3. Preface

4. Short System Description
Deliverables
System Diagram

5. Requirements
5.1 Functional requirements
5.2 Non-Functional Requirements

5.2.1 Software Requirements
5.2.2 Design Decisions

5.3 Stretch requirements

6. Actors and User Stories
6.1 Actors

6.1.2 Actor Characteristics
Data scientist
Data engineers

6.2 User Stories

7. System Restriction
7.1 Security

End-to-end encryption
7.2 Data Storage/Cache
7.3 Open Source
7.4 Accessible API

8 . Additional Requirements for System Construction
8 .1 Process Requirements

8 .1.1 Continuous Integration/Continuous Delivery (CI/CD)
8 .1.2 System Development Framework

8 .2 Technical Requirements
8 .2.1 System Packaging

191

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 193/219

9 . Additional Requirements for Documentation
9 .1 System Documentation

10. Dictionary

1. Presentation
Client

Arbeids- og velferdsdirektoratet
Sannergata 2
0557 Oslo, Norway

About the Client
The Norwegian Labour and Welfare Administration (NAV) is the backbone of the Norwegian
welfare state, administering a third of the national budget and servicing almost 2.8 million people
through a range of schemes such as unemployment benefit, work assessment allowance,
sickness benefit, pension, child benefit and cash-for-care benefit.

In addition, NAV manages and retains stewardship of several important data sources containing
information on its users and the services it provides. NAV IT is currently in the midst of a digital
transformation, undergoing significant changes in team organization, work processes and
harnessing new technologies.

Its use of data in the development of new and improved services is often contingent upon strict
data privacy practices and its ability to innovate in a privacy-preserving manner.

Our client for this assignment is NAV IT Data og Innsikt. Data og Innsikt is a department within
NAV IT. The department delivers the development of systems and operations of data storage, data
processing, data access and analytics.

Person of Contact
Name Role Email

192

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 194/219

Gøran Berntsen Tech Lead - Åpne Data Goran.Berntsen@nav.no

Client Stakeholders
Robindra Prabhu Data Scientist - AI Lab Robindra.Prabhu@nav.no

Paul Bencze Tech Lead - AI Lab Paul.Bencze@nav.no

Supervisor from OsloMET
Name Role Email

Eva Hadler Vihovde Associate Professor evahadler.vihovde@oslomet.no

2. Project Background
AI Lab is a department in NAV IT Data og Innsikt, functioning as NAV ITs internal knowledge hub
in machine learning and data science. One of the areas the team currently is handling is data
anonymization. This area presents problems in both the legal and ethical domain, because of its
close connection to personal data.

Data anonymization is a large field with many projects worldwide. There are well established
models and algorithms for both anonymization and analytics of data. AI Lab is currently utilizing
both internal and external tools for data anonymization. One such tool is ARX , which is widely
regarded as top-class anonymization software. ARX is an open source (Apache License, Version
2.0) project distributed as a GUI application and as a Java JAR library. It is prominently used by
large organizations to anonymize health and patient data.

ARX contains a large and powerful amount of functionality for data anonymization, but the
interaction with said functionality is limited to either interaction with the GUI application or
programmatically with the Java API provided by the JAR. Neither option is well suited to modern
data science applications.

Data science today is typically conducted within programming languages like Python and R. The
data scientist develops scripts, notebooks and larger programs for extracting and analysing data.
Early stage tasks typically include data cleaning and data transformation. Anonymisation may be
viewed as such a data transformation task, but ARX currently does not integrate seamlessly into
the typical Python/R-based data science workflow.

Moreover, while ARX provides functionality and flexibility for a skilled user, the front-end arguably
requires knowledge of technical concepts and methods in anonymisation above and beyond that

193

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 195/219

of the typical developer and which requires a non-trivial investment of time to learn and
understand.

The AI-lab has therefore requested the group to:

● Provide access to ARX functionality from modern data science toolsets and workflows
● Provide an extendable framework for making state-of-the-art anonymisation methods

accessible to a wider audience in NAV IT by lowering the barriers to use.

3. Preface
Sommerville (2010). “The software requirements document [...] is an official statement of what the
system developers should implement.” “[...] the requirements document has to be a compromise
between communicating the requirements to customers, defining the requirements in precise
detail for software developers and testers, and including information about possible system
evolution.” Software Engineering (91-92)

This is a technical document meant for the product stakeholders , with the purpose of providing
clarification and guidance to the project. It contains both the technical and non-technical
requirements and they are written in close cooperation with our client.

The terms data and dataset are used continuously throughout the documentation. Unless anything
else is specified, the term refers to tabular data/datasets. The problem space is data
anonymization, as such, when talking about data/datasets we are generally referring to population
data.

The team employs an Agile work process. The product specification also serves as our basis for
the backlog of user stories to be prioritised and implemented during the project lifetime.

4. Short System Description
The system will provide access to anonymization tools for data scientists at NAV IT. A data
scientist should be able to anonymize tabular dataset based on user-specific configurations.
Configurability includes privacy models , column attribute types and transformation models that
determine how much data will be lost in the resulting anonymized dataset.

A common use case would be in a workflow where the data scientist is manipulating a dataset,
and requires dynamic analysis of the data’s anonymity metrics. Another use case could involve
integrating the system in a data pipeline to provide data analytics and anonymization capabilities.

Deliverables
- Python Package - working title: PyAaaS

194

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 196/219

Python package wrapper providing abstracted access to the backend service.

- Web Service - working title: AaaS

Java Spring web service.

System Diagram
Preliminary draft of the system to be implemented

Jupyter notebook is a common user interface among data scientists, and will be a important
platform for the system to support. In a Jupyter Notebook a data scientist that wishes to
anonymize or analyze a dataset will import a Python package which wraps and abstracts the
backend service. The backend service utilizes the ARX library and Spring framework to deliver the
anonymization and analytics functionality as a web service. The service is packaged as a Docker
container.

5. Requirements
The collection of system requirements defined in collaboration with the client(NAV IT - AI lab)

195

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 197/219

5.1 Functional requirements
- The system will provide the ability to complete data anonymization with the provided user

configurations on tabular datasets.

- The system will provide the ability to analyze re-identification risks on tabular datasets.

- The system will provide the ability to configure the Privacy Models to use in the
anonymization.

- The system will provide the ability to configure data Attribute Type to use in the
anonymization.

- The system will provide the ability to configure the Transformation Models to use in the
anonymization.

- The system will provide the ability to produce a visual presentation of data anonymity
metrics.

- The system will provide the ability to compare data from before and after data
anonymization.

- The system will be able to consume data in a variety of formats including
(pandas.DataFrame , path to csv file, url to data resource, csv string, JSON).

- The system will be able to deliver the anonymized dataset in a variety of formats including
(pandas.DataFrame, csv file, JSON).

- The system will be able to deliver metrics about the anonymization in a variety of formats
including (pandas.DataFrame, csv file, JSON, Data Package).

- The system will provide the ability to produce data package metadata regarding the
anonymization process that has been completed on the dataset and the relevant metrics.

5.2 Non-Functional Requirements

5.2.1 Software Requirements

- The client has requested that the team uses the ARX anonymizer library to implement
anonymization functionality.

- The client has required that resulting anonymization process has to be more efficient than
the previous and reduce the hours that are spent doing this manually.

- The client has required that the project is published as an open source project with an MIT
licence .

196

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 198/219

- The client has required that the system backend will be packaged as a docker image so
the service can be deployed to the NAIS / Kubernetes platforms.

- The client has required that the team develop a Python package to “wrap” the web service,
it will provide easy integration and interaction between the web service and data scientist
tools and processes.

- The client has requested that the Python package has to be designed for use in a Jupyter
notebook .

- The client has required that the system will utilize end to end encryption for data in transit,
to and from the web service backend.

5.2.2 Design Decisions
Design decisions made by the team in collaboration with the customer to achieve the stated goal
of the system.

- English will be the main language used for both the documentation and programming to
make it easier for the team to deliver on the open source requirement from the client.

- The team has decided to utilize Java as its runtime environment for the backend service.
The ARX library that the client has requested to be used is packaged as a Java JAR file.
Using Java was a logical choice.

- The team has decided to use a service architecture to decouple the different logical
components of the project. A service architecture will also deliver on the clients wish to be
able to scale the system dynamically according to use.

- The team has decided to utilize Spring as its backend framework to deliver a web service
in accordance with the service architecture. Spring is the defacto standard for Java web
applications and has great libraries for development of secure, scalable web applications.

5.3 Stretch requirements
Stretch requirements are wishes from the customer that the development team will try to achieve if
there is time left after the main requirements.

- The system will be able to auto generate a hierarchy level based on the column attribute
type.

- Provide specific Transformation Model hierarchies for NAV specific use cases (eg.
Norwegian geographical hierarchies, Norwegian zip code hierarchies).

197

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 199/219

- Provide an alternative web frontend that provides a lower barrier to entry, and a more user
friendly interaction.

- Grafana dashboard for surveillance of the anonymization service.

6. Actors and User Stories
Description of Actors, their characteristics and user stories that defines their interest.

6.1 Actors
An actor is an entity who interacts with the system from the outside. Primary actors are those who
require assistance from the system. While secondary actors are those who the system needs
assistance from.

Primary Actors Description

Data Scientist A data scientist working at NAV.

Secondary Actors Description

Data Engineer A data engineer working at NAV.

6.1.2 Actor Characteristics

Data scientist

Data scientist are super users with good programming and statistical knowledge. Data scientists
are the primary user of the system.

Data engineers

Data engineers are system engineers specialised in data driven applications. They support the
data scientists by building and deploying data pipelines and other data infrastructure.

198

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 200/219

6.2 User Stories
User stories are one of the primary development artifacts for Scrum project teams. A user story is
a very high-level definition of a requirement, containing just enough information so that the
developers can produce a reasonable estimate of the effort to implement it.

Actor Story Priority

Data
Scientist

As a data-scientist, I would like to easily visualize the
anonymization metrics for anonymized datasets

Reasoning: Visualization is a powerful tool to get an
understanding of complex data.

High

Data
Scientist

As a data-scientist, I would like to analyze the anonymization
metrics (re-identification risks) of my dataset

Reasoning: Getting metrics of the anonymization level of a
dataset is necessary to judge how safe the dataset is to use in
production, and/or if the dataset should be anonymized further.

High

Data
Scientist

As a data scientist, I would like to have a single source where to
lookup the documentation for the PyAaaS package (AaaS
Python wrapper package).

Reasoning: To facilitate efficient use of the Python package it is
critical to make available up-to-date documentation of both the
package API and tutorials for common use cases.

Medium

Data
Scientist

As a data scientist, I would like to be able to configure the
Privacy Models to be used when anonymizing my dataset

High

Data
Scientist

As a data scientist, I would like to be able to configure the
Transformation Models to be used when anonymizing my
dataset.

High

Data
Scientist

As a data scientist, I would like to be able to use
K-Anonymization as a Privacy Model for my dataset.

High

Data
Scientist

As a data scientist, I would like to be able to set a global
transformation scheme for all record s in a column/field.

High

Data
Scientist

As a data scientist, I would like to be able to set a local
transformation scheme for a column/field . Meaning a unique
transformation scheme for each individual row or subset of rows
in a column/field.

Low

199

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 201/219

Data
Scientist

As a data scientist, I would like to be able to use a Value
Generalization hierarchy as a Transformation Model for a
column/field.

High

Data
Scientist

As a data scientist, I would like to be able to use random
sampling as a Transformation Model for a column/field

Medium

Data
Scientist

As a data scientist, I would like to be able to use attribute
suppression as a Transformation Model for a column/field

Medium

Data
Scientist

As a data scientist, I would like to use microaggregation as a
Transformation Model .

Medium

Data
Scientist

As a data scientist, I would like to use Top- and bottom-coding
as a Transformation Model.

Medium

Data
Scientist

As a data scientist, I would like to use Categorization as
Transform Model for a column/field.

Medium

Data
Scientist

As a data scientist, I would like to identify rows affected by
lowest risk in a dataset.

Low

Data
Scientist

As a data scientist, I would like to determine the Lowest
prosecutor re-identification risk.

Low

Data
Scientist

As a data scientist, I would like to determine highest prosecutor
re-identification risk.

High

Data
Scientist

As a data scientist, I would like to identify rows affected by
highest risk.

High

Data
Scientist

As a data scientist, I would like to determine average prosecutor
re-identification risk.

High

Data
Scientist

As a data scientist, I would like to determine fraction of unique
records.

High

Data
Scientist

As a data scientist, I would like to be able to use K-map as a
Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to us e Average risk as
a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Population
uniqueness as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Sample
uniqueness as a Privacy Model for my dataset.

Low

200

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 202/219

Data
Scientist

As a data scientist, I would like to be able to use δ-Disclosure
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use β-Likeness
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use δ-Presence
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Profitability
privacy as a Privacy Model for my dataset.

Low

Data
Scientist

As a data scientist, I would like to be able to use Differential
privacy as a Privacy Model for my dataset.

Medium

Data
Scientist

As a data scientist, I would like to be able to use ℓ-Diversity as a
Privacy Model for my dataset

High

Data
Scientist

As a data scientist, I would like to be able to set presets for
anonymization e.g loss percentage, min/max risk of prosecution

Low

Data
Scientist

As a data scientist, I would like to be able to verify whether an
anonymized dataset has been anonymized from an original
dataset

Low

Actor Story Priority

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like to be able to deploy the service to a docker container
environment.

high

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like continuous information about the build status of the AaaS
web service source code

medium

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like a single source/location for documentation, for setup and
deployment of the AaaS service.

medium

Data
Engineer

As a data engineer supporting the AaaS service in NAV, I would
like a single source/location for the AaaS projects JavaDoc

low

Data
Engineer

As a data engineer supporting the AaaS service in NAV,I would
like to have logging available from the AaaS service.

high

201

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 203/219

7. System Restriction
This section explains the system and client defined restriction. In this section the team defines the
limitations of the system to be developed.

7.1 Security

End-to-end encryption
The client has requested that the system use end-to-end encryption between the backend service
and consumers of the service (Python package, Third-party applications). The team has decided
to use TLS/SSL provided by the Spring framework .

7.2 Data Storage/Cache
The developed system cannot store or implement caching due to the sensitive nature of the data
used.

7.3 Open Source
In accordance with the clients request the project with all source code and documentation will be
released under an open source licence. Currently the team working under the MIT Licence .

7.4 Accessible API
Our API must follow RESTful guidelines and strive to provide endpoints that allow for seamless
interaction with the ARX library.

8. Additional Requirements for System Construction
Additional non-functional requirements defined by the development team in cooperation with the
client. These requirements are meant to improve the quality and maintainability of the end product.

8.1 Process Requirements

8.1.1 Continuous Integration/Continuous Delivery (CI/CD)

 CI platform

202

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 204/219

The system uses Travis CI and Code Climate as Continuous Integration tools. Travis
ensures that the codes are tested, while code climate checks the code quality and test
coverage before being pushed to the repository. Along with Travis and Code Climate, the
team uses GitHub with merge rules to ensure that the master build stays stable.

Each new iteration of the master build is packaged into a jar file, which would be packaged
again into a Docker image. This way we will have different stable builds that can be
deployed easily as a Docker container.

 Version Control System (VCS)

Travis CI along with GitHub Merge rules maintains the stability of each version before a
release.

Github Merge rules does not allow directly pushing to the master build, along with not
allowing to push to the repository unless all test class passes. Each time there is a new
implementation a new branch needs to be made. This new branch is then tested before
being pushed to the repository, which is then finally merged to the master build.

Travis CI instantiates a docker container that runs the build being pushed along with all the
test classes. If a build passes Travis will then allow the build to pushed.

 Static Code Analysis

Code climate is used to ensure the maintainability and test coverage of the codes written.
Travis generates a test report using Jacoco , which is then forwarded to Code Climate by
using a unique ID. Code climate reads through the report and generates a grade for test
coverage of our system. Code climate is directly link to the systems GitHub repository,
granting access to check the quality of the codes written. Based on the quality of the code
a grade will be generated for the maintainability of our system.

8.1.2 System Development Framework

The team is developing the system under the SCRUM framework.

8.2 Technical Requirements

8.2.1 System Packaging

203

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 205/219

Backend Service

- Docker Image

Python Wrapper Package

- Python package wheel and source distribution

9. Additional Requirements for Documentation
Additional non-functional requirements defined by the team in cooperation with the client. These
requirements are meant to improve the quality of the documentation.

9.1 System Documentation
The system backend service and python package will be delivered with documentation for the
corresponding to the intended usage.

Backend Service Documentation

- Setup and deployment tutorial
- System JavaDoc

Python Wrapper Package Documentation

- Installation
- Common usage tutorial
- Examples (notebooks)
- API docs

10. Dictionary
Attribute Type - the disclosure risks from which a dataset is to be protected.

ARX - is a comprehensive open source software for anonymizing sensitive personal data.

Code Climate - engineering process insights and automated code review for GitHub and GitHub
Enterprise help you ship better software, faster.

Continuous Integration - the practice of merging all developer working copies to a shared
mainline several times a day.

204

https://en.wikipedia.org/wiki/Trunk_(software)

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 206/219

Data Package - Data Package is a simple container format used to describe and package a
collection of data. link: https://frictionlessdata.io/data-packages/

Data pipeline - a data pipeline is a set of actions that extract data (or directly analytics and
visualization) from various sources.

Docker - the fastest growing cloud-enabling technology and driving a new era of computing and
application architecture with their lightweight approach to bundle applications and dependencies
into isolated, yet highly portable application packages.

GitHub - a git repository hosting platform. Commonly used for open-source software.

Jacoco - is a free Java code coverage library distributed under the Eclipse Public License.

Java - is a high-power, stable and highly trusted programing language. Commonly used in
backend application with a requirement for stability.

Javascript - an object-oriented computer programming language commonly used to create
interactive effects within web browsers.

JSON - is an open-standard file format that uses human-readable text to transmit data objects
consisting of attribute–value pairs and array data types.

Jupyter Notebook - Project Jupyter exists to develop open-source software, open-standards, and
services for interactive computing across dozens of programming languages.

Kubernetes - is an open-source container orchestration system for automating application
deployment, scaling, and management.

MIT Licence - The MIT License is a permissive free software license originating at the
Massachusetts Institute of Technology (MIT). link: https://opensource.org/licenses/MIT

NAIS - is an application platform built to increase development speed by providing our developers
at NAV with the best possible tools to develop and run their applications.

Pandas - is an open source, BSD-licensed library providing high-performance, easy-to-use data
structures and data analysis tools for the Python programming language.

Pandas Dataframe - a one-dimensional labeled array capable of holding any data type with axis
labels or index.

Privacy Model - Privacy models are specific algorithms applied to a dataset to protect the dataset
from an identification risk vector.

Product Stakeholders - NAV IT, OsloMET, the development team

Python - Python is a powerful, high-level language. Used in everything from web apps to
data-science/machine learning.

Spring - is an open-source, high-power, Java application framework for business applications.

Scrum - is an agile framework for managing knowledge work, with an emphasis on software
development . It is designed for teams of three to nine members, who break their work into actions
that can be completed within timeboxed iterations, called "sprints", no longer than one month and

205

https://frictionlessdata.io/data-packages/
https://en.wikipedia.org/wiki/Permissive_free_software_license
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://opensource.org/licenses/MIT
https://www.nav.no/
https://www.nav.no/
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 207/219

most commonly two weeks, then track progress and re-plan in 15-minute stand-up meetings ,
called daily scrums.

Tabular dataset - a data consisting of or presented in columns or tables.

Transformation Model - Transformation Models are strategies that describes how a specific
column in the dataset should lose data as the anonymization tries to achieve the required
anonymization level specified by the Privacy Model.

Travis CI - is a hosted, distributed continuous integration service used to build and test software
projects hosted at GitHub.

206

https://en.wikipedia.org/wiki/Stand-up_meeting

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 208/219

7.3 Testimonial from NAV IT (Norwegian)

Figure 84 - Testimony from NAV IT

207

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 209/219

7.4 Analyzation HTTP JSON request body

$ curl 'http://localhost:8080/api/analyze' -i -X POST \
 -H 'Content-Type : application/json;charset=UTF-8' \
 - d '{
 "data" : [["age", "gender", "zipcode"], ["34", "male", "81667"], ["35", "female",
"81668"], ["36", "male", "81669"], ["37", "female", "81670"], ["38", "male",
"81671"], ["39", "female", "81672"], ["40", "male", "81673"], ["41", "female",
"81674"], ["42", "male", "81675"], ["43", "female", "81676"], ["44", "male",
"81677"]],
 " attributes" : [{
 " field" : "age",
 " attributeTypeModel" : "IDENTIFYING",
 " hierarchy" : null
 }, {
 " field" : "gender",
 " attributeTypeModel" : "SENSITIVE",
 " hierarchy" : null
 }, {
 " field" : "zipcode",
 " attributeTypeModel" : "QUASIIDENTIFYING",
 " hierarchy" : null
 }],
 " privacyModels" : null,
 " suppressionLimit" : null
}'

7.5 Analyzation HTTP JSON response body
HTTP/1.1 200 OK
Content-Length : 4123
Content-Type : application/json;charset=UTF-8

{
 "reIdentificationRisk" : {
 "measures" : {
 "estimated_journalist_risk" : 1.0 ,
 "records_affected_by_highest_prosecutor_risk" : 1.0 ,
 "sample_uniques" : 1.0 ,
 "lowest_risk" : 1.0 ,
 "estimated_prosecutor_risk" : 1.0 ,
 "highest_journalist_risk" : 1.0 ,
 "records_affected_by_lowest_risk" : 1.0 ,
 "average_prosecutor_risk" : 1.0 ,
 "estimated_marketer_risk" : 1.0 ,
 "highest_prosecutor_risk" : 1.0 ,
 "records_affected_by_highest_journalist_risk" : 1.0 ,
 "population_uniques" : 1.0
 },
 "attackerSuccessRate" : {

208

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 210/219

 "successRates" : {
 "Prosecutor_attacker_success_rate" : 1.0 ,
 "Marketer_attacker_success_rate" : 1.0 ,
 "Journalist_attacker_success_rate" : 1.0
 }
 },
 "quasiIdentifiers" : ["zipcode"],
 "populationModel" : "ZAYATZ"
 },
 "distributionOfRisk" : {
 "riskIntervalList" : [{
 "interval" : "]50,100]" ,
 "recordsWithRiskWithinInteval" : 1.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]33.4,50]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]25,33.4]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]20,25]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]16.7,20]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]14.3,16.7]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]12.5,14.3]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]10,12.5]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]9,10]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]8,9]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]7,8]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,

209

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 211/219

 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]6,7]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]5,6]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]4,5]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]3,4]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]2,3]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1,2]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.1,1]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.01,0.1]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.001,0.01]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.0001,0.001]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1e-5,0.0001]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1e-6,1e-5]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0,1e-6]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0

210

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 212/219

 }]
 }
}

7.6 Anonymization HTTP JSON request body

$ curl 'http://localhost:8080/api/anonymize' -i -X POST \
 -H 'Content-Type : application/json;charset=UTF-8' \
 - d '{
 "data" : [["age", "gender", "zipcode"], ["34", "male", "81667"], ["35", "female",
"81668"], ["36", "male", "81669"], ["37", "female", "81670"], ["38", "male",
"81671"], ["39", "female", "81672"], ["40", "male", "81673"], ["41", "female",
"81674"], ["42", "male", "81675"], ["43", "female", "81676"], ["44", "male",
"81677"]],
 " attributes" : [{
 " field" : "age",
 " attributeTypeModel" : "IDENTIFYING",
 " hierarchy" : null
 }, {
 " field" : "gender",
 " attributeTypeModel" : "SENSITIVE",
 " hierarchy" : null
 }, {
 " field" : "zipcode",
 " attributeTypeModel" : "QUASIIDENTIFYING",
 " hierarchy" : [["81667", "8166*", "816**", "81***", "8****", "*****"], ["81668",
"8166*", "816**", "81***", "8****", "*****"], ["81669", "8166*", "816**", "81***",
"8****", "*****"], ["81670", "8167*", "816**", "81***", "8****", "*****"], ["81671",
"8167*", "816**", "81***", "8****", "*****"], ["81672", "8167*", "816**", "81***",
"8****", "*****"], ["81673", "8167*", "816**", "81***", "8****", "*****"], ["81674",
"8167*", "816**", "81***", "8****", "*****"], ["81675", "8167*", "816**", "81***",
"8****", "*****"], ["81676", "8167*", "816**", "81***", "8****", "*****"], ["81677",
"8167*", "816**", "81***", "8****", "*****"]]
 }],
 " privacyModels" : [{
 " privacyModel" : "KANONYMITY",
 " params" : {
 " k" : "5"
 }
 }, {
 " privacyModel" : "LDIVERSITY_DISTINCT",
 " params" : {
 " column_name" : "gender",
 " l" : "2"
 }
 }],
 " suppressionLimit" : 0.02
}'

211

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 213/219

7.7 Anonymization HTTP JSON response body

HTTP/1.1 200 OK
Content-Length : 7296
Content-Type : application/json;charset=UTF-8

{
 "anonymizeResult" : {

"data" : [["age" , "gender" , "zipcode"], ["*" , "male" , "816**"], ["*" ,
"female" , "816**"], ["*" , "male" , "816**"], ["*" , "female" , "816**"], ["*" , "male" ,
"816**"], ["*" , "female" , "816**"], ["*" , "male" , "816**"], ["*" , "female" , "816**"
], ["*" , "male" , "816**"], ["*" , "female" , "816**"], ["*" , "male" , "816**"]],

"anonymizationStatus" : "ANONYMOUS" ,
"metrics" : {

 "attributeGeneralization" : [{
 "name" : "zipcode" ,
 "type" : "QUASI_IDENTIFYING_ATTRIBUTE" ,
 "generalizationLevel" : 2
 }],
 "processTimeMillisecounds" : 5 ,
 "privacyModels" : [{
 "monotonicWithGeneralization" : true ,
 "attribute" : "gender" ,
 "l" : 2.0 ,
 "localRecodingSupported" : true ,
 "minimalClassSize" : 2 ,
 "requirements" : 4 ,
 "riskThresholdJournalist" : 0.5 ,
 "riskThresholdMarketer" : 0.5 ,
 "riskThresholdProsecutor" : 0.5 ,
 "minimalClassSizeAvailable" : true ,
 "populationModel" : null ,
 "dataSubset" : null ,
 "subset" : null ,
 "monotonicWithSuppression" : true ,
 "sampleBased" : false ,
 "subsetAvailable" : false
 }, {
 "monotonicWithGeneralization" : true ,
 "k" : 5 ,
 "minimalClassSize" : 5 ,
 "requirements" : 1 ,
 "riskThresholdJournalist" : 0.2 ,
 "riskThresholdMarketer" : 0.2 ,
 "riskThresholdProsecutor" : 0.2 ,
 "localRecodingSupported" : true ,
 "minimalClassSizeAvailable" : true ,
 "populationModel" : null ,
 "dataSubset" : null ,
 "subset" : null ,
 "monotonicWithSuppression" : true ,

212

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 214/219

 "sampleBased" : false ,
 "subsetAvailable" : false
 }]

},
"attributes" : [{

 "field" : "age" ,
 "attributeTypeModel" : "IDENTIFYING" ,
 "hierarchy" : null

}, {
 "field" : "gender" ,
 "attributeTypeModel" : "SENSITIVE" ,
 "hierarchy" : null

}, {
 "field" : "zipcode" ,
 "attributeTypeModel" : "QUASIIDENTIFYING" ,
 "hierarchy" : [["81667" , "8166*" , "816**" , "81***" , "8****" , "*****"], [
"81668" , "8166*" , "816**" , "81***" , "8****" , "*****"], ["81669" , "8166*" , "816**" ,
"81***" , "8****" , "*****"], ["81670" , "8167*" , "816**" , "81***" , "8****" , "*****"], [
"81671" , "8167*" , "816**" , "81***" , "8****" , "*****"], ["81672" , "8167*" , "816**" ,
"81***" , "8****" , "*****"], ["81673" , "8167*" , "816**" , "81***" , "8****" , "*****"], [
"81674" , "8167*" , "816**" , "81***" , "8****" , "*****"], ["81675" , "8167*" , "816**" ,
"81***" , "8****" , "*****"], ["81676" , "8167*" , "816**" , "81***" , "8****" , "*****"], [
"81677" , "8167*" , "816**" , "81***" , "8****" , "*****"]]

}]
 },
 "riskProfile" : {

"reIdentificationRisk" : {
 "measures" : {
 "estimated_journalist_risk" : 0.09090909090909091 ,
 "records_affected_by_highest_prosecutor_risk" : 1.0 ,
 "sample_uniques" : 0.0 ,
 "lowest_risk" : 0.09090909090909091 ,
 "estimated_prosecutor_risk" : 0.09090909090909091 ,
 "highest_journalist_risk" : 0.09090909090909091 ,
 "records_affected_by_lowest_risk" : 1.0 ,
 "average_prosecutor_risk" : 0.09090909090909091 ,
 "estimated_marketer_risk" : 0.09090909090909091 ,
 "highest_prosecutor_risk" : 0.09090909090909091 ,
 "records_affected_by_highest_journalist_risk" : 1.0 ,
 "population_uniques" : 0.0
 },
 "attackerSuccessRate" : {
 "successRates" : {
 "Prosecutor_attacker_success_rate" : 0.09090909090909091 ,
 "Marketer_attacker_success_rate" : 0.09090909090909091 ,
 "Journalist_attacker_success_rate" : 0.09090909090909091
 }
 },
 "quasiIdentifiers" : ["zipcode"],
 "populationModel" : "DANKAR"

},
"distributionOfRisk" : {

 "riskIntervalList" : [{

213

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 215/219

 "interval" : "]50,100]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]33.4,50]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]25,33.4]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]20,25]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]16.7,20]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]14.3,16.7]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]12.5,14.3]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]10,12.5]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]9,10]" ,
 "recordsWithRiskWithinInteval" : 1.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 1.0
 }, {
 "interval" : "]8,9]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]7,8]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]6,7]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]5,6]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]4,5]" ,

214

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 216/219

 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]3,4]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]2,3]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1,2]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.1,1]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.01,0.1]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.001,0.01]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0.0001,0.001]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1e-5,0.0001]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]1e-6,1e-5]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }, {
 "interval" : "]0,1e-6]" ,
 "recordsWithRiskWithinInteval" : 0.0 ,
 "recordsWithMaxmalRiskWithinInterval" : 0.0
 }]

}
 }
}

7.8 Redaction based hierarchy HTTP JSON request body

POST /api/hierarchy HTTP/1.1
Content-Length : 260

215

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 217/219

Content-Type : application/json;charset=UTF-8
Host : localhost:8080

{
 "column" : ["0" , "1" , "2" , "3" , "4" , "5" , "6" , "7" , "8" , "9"],
 "builder" : {

"type" : "redactionBased" ,
"paddingCharacter" : " " ,
"redactionCharacter" : "*" ,
"paddingOrder" : "RIGHT_TO_LEFT" ,
"redactionOrder" : "RIGHT_TO_LEFT"

 }
}

7.9 Redaction based hierarchy HTTP JSON response body

HTTP/1.1 200 OK
Content-Length : 162
Content-Type : application/json;charset=UTF-8

{
 "hierarchy" : [["0" , "*"], ["1" , "*"], ["2" , "*"], ["3" , "*"], ["4" ,
"*"], ["5" , "*"], ["6" , "*"], ["7" , "*"], ["8" , "*"], ["9" , "*"]]
}

7.10 Interval based hierarchy HTTP JSON request body

POST /api/hierarchy HTTP/1.1
Content-Length : 832
Content-Type : application/json;charset=UTF-8
Host : localhost:8080

{
 "column" : ["0" , "1" , "2" , "3" , "4" , "5" , "6" , "7" , "8" , "9"],
 "builder" : {

"type" : "intervalBased" ,
"intervals" : [{

 "from" : 0 ,
 "to" : 2 ,
 "label" : "young"

}, {
 "from" : 2 ,
 "to" : 4 ,
 "label" : "adult"

216

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 218/219

}, {
 "from" : 4 ,
 "to" : 8 ,
 "label" : "old"

}, {
 "from" : 8 ,
 "to" : 9223372036854775807 ,
 "label" : "very-old"

}],
"levels" : [{

 "level" : 0 ,
 "groups" : [{
 "grouping" : 2 ,
 "label" : null
 }]

}],
"lowerRange" : {

 "snapFrom" : 0 ,
 "bottomTopCodingFrom" : 0 ,
 "minMaxValue" : -2305843009213693952

},
"upperRange" : {

 "snapFrom" : 81 ,
 "bottomTopCodingFrom" : 100 ,
 "minMaxValue" : 2305843009213693951

},
"dataType" : "LONG"

 }
}

7.11 Interval based hierarchy HTTP JSON response body

HTTP/1.1 200 OK
Content-Length : 352
Content-Type : application/json;charset=UTF-8

{
 "hierarchy" : [["0" , "young" , "[0, 4[" , "*"], ["1" , "young" , "[0, 4[" , "*"
], ["2" , "adult" , "[0, 4[" , "*"], ["3" , "adult" , "[0, 4[" , "*"], ["4" ,
"old" , "[4, 8[" , "*"], ["5" , "old" , "[4, 8[" , "*"], ["6" , "old" , "[4, 8[" ,
"*"], ["7" , "old" , "[4, 8[" , "*"], ["8" , "very-old" , "[8, 12[" , "*"], [
"9" , "very-old" , "[8, 12[" , "*"]]
}

217

22/05/2019 Report v1 - Google Docs

https://docs.google.com/document/d/1o19JWL3fs5s9ykUb8SRSZ4eI01RQoLOr6jlhys5A7u8/edit 219/219

7.12 Order based hierarchy HTTP JSON request body

POST /api/hierarchy HTTP/1.1
Content-Length : 371
Content-Type : application/json;charset=UTF-8
Host : localhost:8080

{
 "column" : ["Oslo" , "Bergen" , "Stockholm" , "London" , "Paris"],
 "builder" : {

"type" : "orderBased" ,
"levels" : [{

 "level" : 0 ,
 "groups" : [{
 "grouping" : 3 ,
 "label" : "nordic-city"
 }]

}, {
 "level" : 0 ,
 "groups" : [{
 "grouping" : 2 ,
 "label" : "mid-european-city"
 }]

}]
 }
}

7.13 Order based hierarchy HTTP JSON response body

HTTP/1.1 200 OK
Content-Length : 204
Content-Type : application/json;charset=UTF-8

{
 "hierarchy" : [["Oslo" , "nordic-city" , "*"], ["Bergen" , "nordic-city" , "*"
], ["Stockholm" , "nordic-city" , "*"], ["London" , "mid-european-city" , "*"],
["Paris" , "mid-european-city" , "*"]]
}

218

